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Abstract—Acoustic novelty detection aims at identifying ab-
normal/novel acoustic signals which differ from the refer-
ence/normal data that the system was trained with. In this
paper we present a novel approach based on non-linear predic-
tive denoising autoencoders. In our approach, auditory spectral
features of the next short-term frame are predicted from the
previous frames by means of Long-Short Term Memory (LSTM)
recurrent denoising autoencoders. We show that this yields an
effective generative model for audio. The reconstruction error
between the input and the output of the autoencoder is used
as activation signal to detect novel events. The autoencoder
is trained on a public database which contains recordings of
typical in-home situations such as talking, watching television,
playing and eating. The evaluation was performed on more than
260 different abnormal events. We compare results with state-
of-the-art methods and we conclude that our novel approach
significantly outperforms existing methods by achieving up to
94.4 % F-Measure.

I. INTRODUCTION

Novelty detection is a challenging task, and it aims at
recognising situations in which unusual events occur. The
problem can be treated as one-class classification task: typ-
ically the amount of normal data consists of a very large set,
and the normal class can be accurately modelled, whereas
the acoustic events belonging to the class are considered
novel events. Many approaches have been proposed due to
the practical importance of the novelty detection, especially
for automatic monitoring systems.

In the past years, many systems have been deployed for
surveillance applications. Surveillance can be seen as control
of public safety or as the supervision of private environments
where people may live alone. In fact, the increasing require-
ment of public security over the past decades has motivated
the installation of sensors such as cameras or microphones
in public places (stores, subway, airports, etc.). Thus, the
need of unsupervised situation assessment stimulated the signal
processing community towards experimenting with several
automated frameworks.

Usually, the research in the area of automatic surveillance
systems is mainly focused on detecting abnormal events based
on the acquired video information. Anyway, the information
given by the acoustic signal offers several advantages, such
as low computational needs or the fact that the illumination
conditions of the space to be monitored do not have an
immediate effect on sound; the same applies for possible

occlusion or fast events like shots or explosions. The statistical
approach is the most widely used for this problem. Its principle
is to model data based on its statistical properties and using
this information to estimate whether a test sample comes from
the same distribution or not.

A. Related work

Statistical and probabilistic approaches are the most com-
monly used in the field of novelty detection. Novelty detection
ranges from automatic recognition of handwriting, the recog-
nition of cancer [1], informatic intrusion detection systems,
non-destructive inspection for the analysis of mechanical com-
ponents [2], audio segmentation [3], to many others.

As early as in 1994, a pioneering study investigated the
relationship between the degree of novelty of the input data
and the corresponding reliability of the outputs from the
neural network, and demonstrated its performance using an
application on the control of the oil flow in multiphases
pipelines [4].

Subsequent works proposed the application of a compres-
sion autoencoder neural network to detect abnormal CPU data
usage [5], [6]. In further works [7], [8], [9], [10], the use of
a compression autoencoder for outlier detection was studied
and in [11] the autoencoder was applied for the task of dam-
age classification under changing environmental conditions. A
technique based on a neural network with the task of classi-
fying mixed acoustic events is presented in [12]. The system
uses a feed-forward network and splits the input signals into
classes or novelty events; it has been tested in a real underwater
environment and realises the detection of recurrent events.
Overall, several studies exists in the field of acoustic event
classification applying Gaussian Mixture Models (GMMs) and
Hidden Markov Models (HMMs) to detect human presence
(speech, laughter, cough), animal sounds, sounds of objects
[13], [14] and sounds caused by various types of guns [15].
However, it is to be emphasised that there is a fundamental
difference between event classification and novelty detection:
the latter has the greater difficulty of not having a priori
knowledge of any element of the novelty class. It can be
argued that this makes generative models, such as GMMs
and HMMs, particularly suited for this task. For example,
studies investigated HMM- and GMM-based approaches for
acoustic surveillance of abnormal situations [16], [17] and
for automatic space monitoring [18]. A (pseudo-)generative



model for acoustic novelty detection in the form of a denoising
autoencoder has been introduced in a recent study [19].

B. Contribution

A novel weakly supervised method based on a non-linear
prediction denoising autoencoder with LSTM recurrent neural
networks is introduced for novelty acoustic detection. The use
of LSTM as generative model [20] for text [21], handwriting
[21], and music [22] generation was recently investigated,
however – to our best knowledge – the use of LSTM as a
model for audio generation is novel. In our approach the LSTM
are trained to predict next frames from previous ones. The
auditory spectral features are processed by the autoencoder,
which acts as a one-class classifier. Our approach relies on the
reconstruction error which the denoising autoencoder commits
trying to predict and reconstruct a novel sound which the
network has never seen in the training phase. We compare
results with state-of-the-art methods and we conclude that our
improved approach significantly outperforms existing methods
by achieving up to 94.4 % F -Measure.

This contribution is structured as follows: First, a basic
description of the different autoencoder-based schemes for
acoustic novelty detection is given (Section II), together with
the presentation of the non-linear prediction approach. Then
the LSTM recurrent neural networks, thresholding strategy,
and features employed in experiments are described in Section
III. The used database and the experimental set-up are jointly
discussed with the evaluation of obtained results in Section
IV. Section V finally draws the paper conclusions.

II. AUTOENCODERS FOR ACOUSTIC NOVELTY
DETECTION

This section introduces the basic concepts of autoencoders
and describes the basic autoencoder, compression autoencoder,
denoising autoencoder, and non-linear predictive autoencoder.

A. Basic Autoencoder

A basic autoencoder (AE) – a kind of neural network
typically consisting of only one hidden layer –, sets the target
values to be equal to the input. Deep neural networks use it, as
an element, to find common data representation from the input
[23], [24]. Formally, in response to an input example x ∈ Rn,
the hidden representation h(x) ∈ Rm is

h(x) = f(W1x+ b1), (1)

where f(z) is a non-linear activation function, typically a
logistic sigmoid function f(z) = 1/(1 + exp(−z)) applied
component-wise, W1 ∈ Rm×n is a weight matrix, and
b1 ∈ Rm is a bias vector.

The network output maps the hidden representation h back
to a reconstruction x̃ ∈ Rn:

x̃ = f(W2h(x) + b2), (2)

where W2 ∈ Rn×m is a weight matrix, and b2 ∈ Rn is a bias
vector.

Given an input set of examples X , autoencoder training
consists in finding parameters θ = {W1,W2, b1, b2} that
minimise the reconstruction error, which corresponds to min-
imising the following objective function:

J (θ) =
∑
x∈X
‖x− x̃‖2 . (3)

The minimization is usually realised by stochastic gradient
descent as in the training of neural networks. The structure
of the AE is given in Figure 1a.

B. Compression Autoencoder

In the case of having the number of hidden units m smaller
than the number of input units n, the network is forced to learn
a compressed representation of the input. For example, if some
of the input features are correlated, then this Compression
Autoencoder (CAE) is able to learn those correlations and
reconstruct the input data from a compressed representation.
The structure of the AE is given in Figure 1b.

C. Denoising Autoencoder

The denoising autoencoder [25] forces the hidden layer
to retrieve more robust features and prevent it from simply
learning the identity. In such a configuration the autoencoder
is trained to reconstruct the input from a corrupted version of
it.

Formally, the initial input x is corrupted by means of
additive isotropic Gaussian noise in order to obtain: x′|x ∼
N(x, σ2I). The corrupted input x′ is then mapped, as with
the basic autoencoder, to a hidden representation

h(x′) = f(W ′1x
′ + b′1), (4)

from which we reconstruct a the original signal as follows

x̃′ = f(W ′2x+ b′2). (5)

The parameters θ′ = {W ′1,W ′2, b′1, b′2} are trained to minimise
the average reconstruction error over the training set, to have
x̃′ as close as possible to the uncorrupted input x, which
corresponds to minimising the objective function in Equation
3. The structure of the denoising autoencoder is shown in
Figure 1c.

D. Non-Linear Predictive Autoencoder

The idea of a non-linear predictive autoencoder is quite
intuitive. The autoencoder is trained to predict the next frame
from the previous one. Formally, the input up to a given time
frame xt is mapped to a hidden representation h

h(xt) = f(W ∗1 , b
∗
1, x1,...,t), (6)

where W and b denote weights and bias, respectively. From
this we reconstruct an approximation of the original signal as
follows,

x̃t+k = f(W ∗2 , b
∗
2, h1,...,t), (7)

where k is the prediction delay, and hi = h(xi). The pa-
rameters θ∗ = {W ∗1 ,W ∗2 , b∗1, b∗2} are trained to minimise the
average reconstruction error over the training set, to have x̃t+k

as close as possible to the prediction delay. A prediction delay
of k = 1 corresponds to a shift of 10 ms in the audio signal (cf.
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Fig. 1. Structure of the (a) basic autoencoder (AE), (b) compression autoencoder (CAE), and (c) denoising autoencoder (DAE) on the training set Xtr or testing
set Xte. Xtr contains data of non-novel acoustic events; Xte consists of novel and non-novel acoustic events.

Section III-C). The training of the parameters is performed by
minimising the objective function (3) – the difference is that
x̃ is now based on non-linear prediction according to (6) and
(7). The training set Xtr consists of background environmental
sounds, and the test set Xte consists of recordings containing
abnormal sounds. In our approach, the initial input xt is
corrupted by means of additive isotropic Gaussian noise in
order to obtain: x′|x ∼ N(x, σ2I). The resulting structure of
the non-linear predictive denoising autoencoder (NP-DAE) is
shown in Figure 2. An overall block diagram of the proposed
novelty detector is depicted in Figure 3. In our study, the
equations (6) and (7) are implemented as LSTM-RNNs (cf.
below).

III. LSTM RECURRENT NEURAL NETWORKS,
THRESHOLDING, AND FEATURES

This section introduces the LSTM recurrent neural net-
works, describes the thresholding strategy, and the features
employed in our experiments.

A. LSTM

LSTM networks were introduced in [26]. Compared to a
conventional RNN, the hidden units are replaced by so-called

Input layer

Hidden layer

Output layer

{x′t : x′t ∈ Xtr,Xte}

{x̃′t+k : x̃′t+k ∈ Xtr,Xte}

Fig. 2. Structure of the non-linear predicting denoising autoencoder (NP-
DAE) on the training set Xtr or testing set Xte. Xtr contains data of non-novel
acoustic events; Xte consists of novel and non-novel acoustic events.

memory blocks. These memory blocks can store information
in the cell variable ct. In this way, the network can exploit
long-range temporal context. Each memory block consists of
a memory cell and three gates: the input gate, output gate, and
forget gate, as depicted in Fig. 4.

These gates control the behaviour of the memory block.
The forget gate can reset the cell variable which leads to
‘forgetting’ the stored input ct, while the input and output
gates are responsible for reading input from xt and writing
output to ht, respectively:

ct = f t ⊗ ct−1 + it ⊗ tanh(W xcxt +W hcht−1 + bc) (8)

ht = ot ⊗ tanh(ct) (9)

where ⊗ denotes element-wise multiplication and tanh is also
applied in an element-wise fashion. The variables it, ot and f t
are the output of the input gates, output gates and forget gates,
respectively, bc is a bias term, and W is the weight matrix.
Each memory block can be regarded as a separate, independent
unit. Therefore, the activation vectors it, ot, f t, and ct are all
of same size as ht, i. e., the number of memory blocks in the
hidden layer. Furthermore, the weight matrices from the cells
to the gates are diagonal, which means that each gate is only
dependent on the cell within the same memory block.

In addition to LSTM memory blocks, we use bidirectional
RNNs [27]. A bidirectional RNN can access context from both
temporal directions. This is achieved by processing the input
data in both directions with two separate hidden layers. Both
hidden layers are then fed to the output layer. The combination
of bidirectional RNNs and LSTM memory blocks leads to

Fig. 3. Block diagram of the proposed acoustic novelty detector with a
denoising autoencoder. Features are extracted from the input signal and the
reconstruction error between the input and the reconstructed features is then
processed by a thresholding block which detects the novel or non-novel event.
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Fig. 4. Long Short-Term Memory block, containing a memory cell and the
input, output, and forget gates

bidirectional LSTM networks [28], where context from both
temporal directions is exploited. It has to be noted that, using
bidirectional LSTM networks makes it impossible to use the
system for online processing.

A network composed of more than one hidden layer is
referred to as a deep neural network (DNN) [29]. By stack-
ing multiple (potentially pre-trained, but not in our system)
hidden layers on top of each other, increasingly higher level
representations of the input data are created (deep learning).
When multiple hidden layers are employed, the output of the
network is (in the case of a bidirectional RNN) computed as

yt = W →
hNy

→
hN
t +W ←

hNy

←
hN
t + by, (10)

where
→
hN
t and

←
hN
t are the forward and backward activations

of the N -th (last) hidden layer, respectively.

We conducted several preliminary evaluations to find the
best network layout by varying the number of hidden layers
and their size (i. e., the number of LSTM units for each
layer). The best network layout for RNN has three hidden
layers with 216 LSTM units each. The best network layout
for bidirectional LSTM (BLSTM) has six hidden layers (three
for each direction) with 156, 256, and 156 LSTM units
respectively.

Supervised learning was applied up to 100 epochs for
training the network. Network weights are recursively updated
by standard gradient descent with backpropagation of the sum
squared error. The gradient descent algorithm requires the
network weights to be initialised with non zero values; thus,
we initialise the weights with a random Gaussian distribution
with mean 0 and standard deviation 0.1.

B. Thresholding

The input and output layer of the network have 54 units.
Thus, the trained autencoder is able to reconstruct each sample
and novel events are identified by processing the reconstruction
error with an adaptive threshold. The input x is segmented
into sequences of 30 seconds of length. For every time-step
the Euclidean distance between each standardised input feature
value and the networks output is computed. The distances are

Fig. 5. (a): Spectrogram of a 30 seconds sequence containing three novel
events, such as a siren and two screams. (b): Reconstruction error signal
of the related sequence obtained with a BLSTM-DAE. (c): Reconstruction
error signal of the related sequence obtanined with a non-linear predictive
BLSTM-DAE (NP-BLSTM-DAE) with a prediction delay of 3 frames. (d):
Reconstruction error signal of the related sequence obtanined with a NP-
BLSTM-DAE with a delay of 5 frames.

summed up and divided by the number of coefficients in order
to represent the reconstruction error of each time-step with a
single value. A threshold θth is then applied to obtain a binary
signal. The threshold is shifted from the median of the error
signal of a sequence e0 by a multiplicative coefficient β, which
ranges from βmin = 1 to βmax = 2:

θth = β ∗median(e0(1), ..., e0(N)) (11)

Fig. 5 shows the reconstruction error for a given sequence.
The figure clearly depicts a low reconstruction error in repro-
ducing normal input such as talking, television sounds, and
other normal environmental sounds. On the other hand, the
denoising autoencoder shows a high reconstruction error when
it comes to reproduce novel acoustic events such as a scream,
or an alarm. Additionally it shows how the different prediction
delays modify the activation.

TABLE I. ACOUSTIC NOVEL EVENTS IN THE TEST SET. SHOWN ARE
THE NUMBER OF DIFFERENT EVENTS, THE AVERAGE DURATION, AND THE

TOTAL DURATION IN SECONDS PER EVENT TYPE.

Type # Events Avg. Duration (s) Total Duration (s)

Alarm 76 6.0 435.8

Scream 111 1.9 214.6

Falls 48 1.8 89.5

Fracture 32 2.2 70.4

Total 267 2.4 810.3

C. Features

Auditory Spectral Features (ASF) [30] are computed by
applying Short Time Fourier Transform (STFT) using a frame



size of 30 ms and a frame step of 10 ms. Each STFT yields the
power spectrogram which is converted to the Mel-Frequency
scale using a filter-bank with 26 triangular filters obtaining the
Mel spectrograms M30(n,m), with n being the frame index,
and m the frequency bin index. Finally, to match the human
perception of loudness, a logarithmic representation is chosen:

M30
log(n,m) = log(M30(n,m) + 1.0) (12)

In addition the positive first order differences D30(n,m) are
calculated from each Mel spectrogram following:

D30(n,m) =M30
log(n,m)−M30

log(n− 1,m) (13)

Furthermore, the frame energy and its derivative are also
included as feature ending up in a total number of 54 features.
The features are extracted with our open-source audio analysis
toolkit openSMILE [31].

IV. EXPERIMENTS AND RESULTS

This section contains the data set used for our evaluation
(Section IV-A), the experiments’ setup (Section IV-B), and a
description of the performances obtained with the proposed
approach (Section IV-C).

A. Evaluation Data Set

Our evaluation dataset is composed by around three hours
of recordings of a home environment, taken from the PASCAL
CHiME speech separation and recognition challenge dataset
[32]. It consists of a typical in-home scenario (a living
room), recorded during different days and times, while the
inhabitants (two adults and two children) perform common
actions, such as talking, watching television, playing, eating.
We used randomly chosen sequences to compose 100 minutes
of background for training set, and around 70 minutes for
testing set. The original dataset was recorded in 2 channels
(with a binaural microphone) and a sample-rate of 16 kHz.
The test set1 was generated adding different kinds of sounds2,
such as screams, alarms, falls and fractures (cf. Table I). The
test set did not include any overlapping events, the events were
normalised to the volume of the background recordings, and
they were added at random position thus the distance between
one event and another is not fixed.

B. Experimental Setup

Several experiments were conducted, to find the the most
suitable setup. The networks were trained with gradient steep-
est descent algorithm on the sum of squared errors (SSE) with a
fixed momentum of 0.9, at different constant values of learning
rate l = {1e−4, 1e−5, ..., 1e−8}, and different noise sigma
values σ = {0.01, 0.1, 0.25}. In the case of the basic (AE) and
the compression autoencoder (CAE) with BLSTM and LSTM
no additive Gaussian noise was applied. The prediction delay
was applied at different values: k = {1, 2, 3, 4, 5, ..., 10}. One
prediction delay unit corresponds to 10 ms. The autoencoders
were trained using our open-source CUDA RecurREnt Neural
Network Toolkit (CURRENNT) [33]. As evaluation metrics we
used Precision, Recall, and F-measure. We evaluated several

1available for download here: http://a3lab.dii.univpm.it/webdav/audio/
testset PASCAL CHiME plus novel.tar.gz

2taken from www.freesound.org

TABLE II. BEST SETUPS FOR NON-LINEAR PREDICTION (NP)
AUTOENCODERS IN THE DIFFERENT LAYOUTS: COMPRESSION

AUTOENCODER (CAE) WITH (B)LSTM, BASIC AUTOENCODER (AE) WITH
(B)LSTM, AND DENOISING AUTOENCODER (DAE) WITH (B)LSTM.

Method Layout Delay (k) P (%) R (%) F1 (%)

NP-LSTM-CAE 54-30-54 1 93.7 91.3 92.5
NP-BLSTM-CAE 54-30-54 3 94.6 91.1 92.8
NP-LSTM-AE 54-54-54 1 92.5 91.6 92.1
NP-BLSTM-AE 54-54-54 2 95.7 92.5 94.1
NP-LSTM-DAE 216-216-216 1 95.2 93.2 94.2
NP-BLSTM-DAE 156-256-156 3 94.9 93.9 94.4

topologies for the non-linear predictive denoising autoencoder
ranging from 54-128-54 to 270-370-270, and from 54-20-54
to 54-54-54 in the case of compression/basic autoencoder.
Every network topology was evaluated for each 100 epochs
of training. In order to compare our results with the state
of the art methods, we reported the performances obtained
with normal basic, compression, and denoising autoencoders
[19]. We employed further two typical approaches based
on GMM and HMM. In the case of GMMs, models were
trained at different numbers of Gaussian components 2n with
n = {1, 2, ..., 8}, whereas left-right HMMs were trained with
different numbers of states s = {3, 4, 5} and 2n Gaussian
components with n = {1, 2, ..., 7}. GMMs and HMMs were
trained using the Torch [34] toolkit. The log-likelihood signal
produced as output of the probabilistic models was post-
processed with a similar thresholding algorithm (cf. Section
III) in order to fairly compare the performances among the
different methods. For all the experiments and settings we
maintained the same feature set.

C. Results

Figure 6 reports performances for progressive values of the
prediction delay (k) – from 0 up to 10 – using a Compression
Autoencoder (CAE), Basic Autoencoder (AE), and Denoising
Autoencoder (DAE) with both, LSTM and BLSTM neural
networks. We evaluated several layouts (cf. Section IV-B)
per network type, but we show only the best ones. Setting
a prediction delay of 3 frames, which corresponds to a total
prediction delay of 30 ms, leads to the best performances of
up to 94.4 % F -Measure in the NP-BLSTM-DAE network,
whereas for NP-LSTM-DAE we observe better performances
with a delay of one frame (10 ms) of up to 94.2 % F -Measure
(cf. Table II). For all the approaches best values of F -Measure
is obtained with k = 2 or k = 3.

It must be observed that, increasing the prediction delay
led to a significant decrease of an F -Measure down to 86 2%.
This is due to the fact that, in presence of higher prediction
delays, quick periodic events induce a higher reconstruction
error, as shown in Fig. 5, where the activation in subplot c
clearly presents higher errors with respect to the one depicted
in in subplot d.

Table II reports the best results for each autoencoder type
and networks. In general, the superiority of DAE schemes with
respect to the CAE/AE ones is motivated by the the strength of
a denoising autoencoder of encoding the input by preserving
the information about the input itself and simultaneously
reversing the effect of a corruption process applied to the input
of the auto-encoder: The combination of these two learning



processes proved to be effective in the experimental results.
Here, we combined the ability of the denoising autencoder
with the non-linear prediction, allowing us to achieve the best
performance (up to 94.4 % F -Measure).

As an overall evaluation on the test set, Fig. 7 shows the
comparison between state-of-the-art methods and our proposed
approach in terms of F -Measure, Precision, and Recall. We
observe that, the proposed NP-BLSTM-DAE method provided
the best performance in terms of Precision, Recall, and F -
Measure of up to 94.9 %, 93.9 %, and 94.4 % respectively (cf.
Table III). A significant absolute improvement (one-tailed z-
test [35], p<0.01) of 3.0 % F -Measure is observed against
the HMM-based approach, while an absolute improvement of
4.0 % F -measure is exhibited with respect to the GMM-based
method; an absolute improvement of 1 % is observed over the
‘ordinary’ BLSTM-DAE. It must be also noted that, with non-
linear prediction, the compression autoencoders NP-(B)LSTM-
CAE (92.1 %) also improved relevantly when compared to the
(B)LSTM-CAE (89.1 %). Thus, while in a previous paper [19]
applying only a single compression learning process seemed
to be not sufficient to encode effectively information about the
input, here CAE works better when the non-linear prediction
scheme is applied.

The beneficial impact of the proposed approach is also
evident in the case of ‘normal’ autoeconders (i. e., with no
compression or denoising): a value of 94.1 % F -Measure for
the NP-BLSTM-AE is achieved in this case. Moreover, if
we look at the combination of a nonlinear prediction and a
denoising autoencoder, which gave us the best performance,
we can also notice that LSTM behaviour is in this case
comparable with the BLSTM one and the corresponding F -
Measure value is superior to those obtained by using the state-
of-art methods. Note that, the LSTM network is causal by
nature, and thus, can be implemented in real-time.

Concluding, the obtained results showed that the employ-
ment of the nonlinear prediction paradigm in combination with
the different (B)LSTM autoencoder-based learning schemes
is effective and a significant performance improvement with
respect to the state-of-the-art approaches was registered.

Fig. 6. Comparison between the different types of NP-Autoencoders varying
the prediction delay.

TABLE III. COMPARISON OVER EXISTING METHODS BY PERCENTAGE
OF PRECISION, RECALL, AND F-MEASURE. INDICATED LAYOUT AND

PREDICTION DELAY. REPORTED APPROACHES ARE: GMM, HMM,
COMPRESSION AUTOENCODER WITH BLSTM (BLSTM-CAE) OR LSTM

(LSTM-CAE), DENOISING AUTOENCODER WITH BLSTM
(BLSTM-DAE) OR LSTM(LSTM-DAE), AND RELATED VERSIONS OF

NON-LINEAR PREDICTIVE AUTOENCODERS NP-(B)LSTM-CAE/AE/DAE.

Method Layout Delay (k) P (%) R (%) F1 (%)

GMM g = 128 - 91.1 87.8 89.4

HMM s = 5, g = 64 - 94.1 88.9 91.4

LSTM-CAE 54-30-54 0 91.7 86.6 89.1
BLSTM-CAE 54-30-54 0 93.6 89.2 91.3

LSTM-AE 54-54-54 0 91.0 87.4 89.1
BLSTM-AE 54-54-54 0 91.1 87.8 89.4

LSTM-DAE 156-256-156 0 94.2 90.6 92.4
BLSTM-DAE 216-216-216 0 94.7 92.0 93.4

NP-LSTM-CAE 54-30-54 1 93.7 91.3 92.5
NP-BLSTM-CAE 54-30-54 3 94.6 91.1 92.8

NP-LSTM-AE 54-54-54 1 92.5 91.6 92.1
NP-BLSTM-AE 54-54-54 2 95.7 92.5 94.1

NP-LSTM-DAE 216-216-216 1 95.2 93.2 94.2
NP-BLSTM-DAE 156-256-156 3 94.9 93.9 94.4
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Fig. 7. Comparison with existing percentage of F -Measure.

V. CONCLUSIONS AND OUTLOOK

We presented a novel, purely unsupervised approach to
acoustic novelty detection. It relies on auditory spectral fea-
tures and non-linear prediction autoencoders with Long Short-
Term Memory acting as a one-class classifier. Our approach
exploits the reconstruction error of the autoencoder when
trying to predict and denoise a novel sound which the network
has never seen in the training phase. The strength of a NP-DAE
is due the combination of two learning processes: encoding
the input by preserving the information about on its variations
on the following frames, simultaneously and removing the
corruption process applied to the input. Additionally using the
LSTM and BLSTM architectures enables the system to use and
learn more context. Results are compared with state-of-the-art
methods and we conclude that our novel approach significantly
outperforms existing methods by achieving up to 94.4 % F -
Measure and with an absolute improvement of 3 % over HMM
system and of 1 % over ordinary BLSTM-DAE. Future works
will focus on the effectiveness of the approach with real-life
databases. Moreover further improvements could be obtained
to use different type of features, likely more suitable to deal



with non-stationary events, like already done by some of the
authors in the musical onset case study [36].
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