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Abstract— Current approaches to automatic analysis of facial
action units (AU) can differ in the way the face appearance is
represented. Some works represent the whole face, dividing
the bounding box region in a regular grid, and applying a
feature descriptor to each subpatch. Alternatively, it is also
common to consider local patches around the facial landmarks,
and apply appearance descriptors to each of them. Almost
invariably, all the features from each of these patches are
combined into a single feature vector, which is the input to
the learning routine and to inference. This constitutes the so-
called feature-level fusion strategy. However, it has recently been
suggested that decision-level fusion might provide better results.
This strategy trains a different classifier per region, and then
combines prediction scores linearly. In this work we extend this
idea to model-level fusion, employing Artificial Neural Networks
with an equivalent architecture. The resulting method has the
advantage of learning the weights of the linear combination in
a data-driven manner, and of jointly learning all the region-
specific classifiers as well as the region-fusion weights. We
show in an experiment that this architecture improves over
two baselines, representing typical feature-level fusion. Further-
more, we compare our method with the previously proposed
linear decision-level region-fusion method, on the challenging
GEMEP-FERA database, showing superior performance.

I. INTRODUCTION

In any method aimed at automatic learning and recognition
of facial muscle activations (FACS Action Units, AUs [4])) or
facial expression, the face images are normally pre-processed
to eliminate spurious sources of variability, most notably mis-
alignment. These pre-processing steps include the detection
of the face bounding box [18][11], the detection of the facial
landmarks [10][19] (although optional, it is an important
step) and the face registration. The first two steps focus on
finding some inner-facial structures, i.e., the facial landmarks
in most cases, that can be put in correspondence for all faces.
Registering face images to a reference face image reduces the
variations in the image due to in-plane rotation, translation
and scaling. This is an attempt to minimize the effect of
variations in the image data caused by factors other than
facial expressions.

After registration, features are typically extracted from the
registered face images. Two main aspects are considered in
the literature: which features to extract (e.g. LBP [20][16],
HOG [1][2], etc), and where to extract them from. Regarding
the latter, two approaches are common in the literature: the
so-called holistic and part-based approaches. The holistic
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approach represents the appearance of the full face bounding
box and extract features directly from it. The bounding
box is usually split into a number of rectangular blocks to
encode spatial information (e.g. [7]). Alternatively, the face
appearance can be represented by a combination of local
image patches around each facial landmark [22]. In both
cases, a set of feature vectors are extracted from different
image patches (be it subdivisions of the bounding box or
patches around landmarks). These vectors are concatenated
into a single feature vector, which is the input to the training
and inference routines.

Recently, Jiang et al. [5] proposed alternative strategies for
two of these aspects: 1) where to extract the features from,
and 2) how to combine region-specific features. The authors
proposed to extract features from non-rectangular regions
defined by the locations of facial landmarks. Specifically,
the facial landmarks were used to define a mesh over the
whole face, and a feature vector was extracted from each of
the regions enclosed by the mesh (see Fig. 2). This strategy
combines the benefits of encoding the appearance of the
whole face, as in holistic approaches, with the parts of the
face representing the same facial area across examples, as for
part-based approaches. The second improvement proposed
in [5] relates to the way all the region-specific features are
combined. Instead of simply concatenating them into a single
vector, Jiang et al. propose to perform decision-level fusion.
To this end, a separate classifier is trained per region, and
then the output scores are combined into the final decision.
Jiang et al. showed that both of these strategies resulted in a
significant performance boosts, either when used in isolation,
and when both were applied. The latter case was shown to
consistently outperform any other strategy compared against.

However, the way each part was combined in the decision-
level fusion strategy was somewhat heuristic. Specifically,
it involved first training a classifier for each region, with
the final decision being a linear combination of region-
specific scores. The coefficients of the linear combination
were computed during training using a validation set, taking
the performance as the weights, so that better-performing
classifiers were given a larger weight, while classifiers per-
forming approximately at random would be given 0 weight.
However, in this work we argue that a data-driven approach,
in which the ideal weights learnt from the training set,
results in better performance. To implement and compare
this, we propose to use Artificial Neural Networks (ANNs),
and use an otherwise equivalent architecture. The benefits
of this approach are: the weights for combining region-
specific classifiers are learnt automatically without resorting



Fig. 1. Feature extraction methods: holistic/block-based (left) and part-
based/RAPs (right). Image taken from [5].

to heuristics, and the contributions of all the region-specific
classifiers are learnt in combination.

We conduct an experiment to demonstrate that the ANN
architecture equivalent to decision-level fusion shows supe-
rior performance when compared to feature concatenation for
facial AU recognition. Furthermore, we perform an experi-
ment on the GEMEP-FERA [17] dataset, which has state-
of-the-art complexity, in order to compare the performance
of our method with that of Jiang et al. [5].

II. RELATED WORK

There has been a long-standing discussion regarding which
features offer the best performance for automatic AU analy-
sis. Every work has claimed the superiority of some combi-
nation of features, registration method, performance measure
and dataset. However, there has not been a uniform con-
clusion and different works still resort to different features.
Some features types are more commonly used with specific
image representation strategies. Specifically, it is common to
use LBP/LPQ features in a holistic manner in combination
with a tiling approach [6]. I.e., the whole face bounding
box is divided into a regular lattice (see Fig. 1), the feature
representation is computed on each tile, and then the features
are concatenated into a single vector. The use of histogram-
based features is common to alleviate the effect of poor
registration of holistic approaches, while tiling is aimed
at maintaining some spatial information within the feature
dimensionality.

Alternatively, some works use a part-based model, com-
puting a feature representation of a small patch around each
facial landmark, and then all of resulting feature vectors
are concatenated into a single one. This strategy is often
combined with HOG/SIFT features (e.g. [3]). There is a long
tradition in computer vision for using these features in part-
based approaches and thus it is a natural choice. However,
whether they offer the best performance for part-based rep-
resentations is not clear, and other feature representations
might be also similarly adequate.

Holistic methods are capable of representing the whole
face appearance and not only patches around points. Fur-
thermore, they are sensitive to flexible shape deformations
(e.g. the lip stretching which is associated with a smile).

However, they offer a poor registration, in the sense that since
face images are only globally aligned, each pixel will refer
to slightly different parts of the face on different examples.
Thus, each feature encoding appearance will refer to a
slightly different part of the face, and extracting generalising
fine-grained patterns from holistically-computed appearance
feature vectors is challenging. Part-based models offer in-
stead a much better registration. However, they are less
sensitive to flexible movements, and they do not represent
the whole face. Furthermore, works such as Lucey et al.
[9], where the registration is taken to the extreme and all
faces are registered with a piecewise affine transformation
into neutral frontal pose (thus maximising registration and
yet eliminating an important amount of the expressive infor-
mation). Remarkably, this strategy offers good performance,
and highlights the paramount importance of a good face
registration strategy [5]. However, whether there is a better
intermediate option in which less expressive information is
lost, is a reasonable question.

The work by Jiang et al. [5] offered an alternative solution.
It consists of using the facial landmarks to create a mesh,
as in typical works on active appearance models [12]. Then,
face regions are defined by merging some of these triangles.
Which triangles to fuse is manually defined, but the decisions
are based on domain knowledge relating different regions
to the facial muscles responsible for the AU. This strategy
showed superior performance in combination with different
feature extraction approaches and for two state-of-the-art
databases [5]. Thus, we adopt this strategy in this work.

However, the problem of how to combine information
coming from different regions has received much less atten-
tion. Action Units are localised within the face by definition.
Thus, restricting the regions of the face used as input is
reasonable, particularly when considering the low number
of examples available for training. However, AUs often co-
occur, and information from other regions can be used as well
for a given AU, thus making it infeasible to define a hand-
crafted combination of regions for each AU. For example,
AU12 (lip stretcher, typical of smiles) co-occurs often with
AU6 (the squinting typical of spontaneous smiles). Thus, the
face regions relevant to AU12 include that on the outer part
of the eyes.

Thus, learning which parts of the face to give importance
to and which not is an interesting problem that has received
little attention so far. One such approach was presented for
facial expressions in Zhong et al. [21], where they employed
a sparse multi-task learning approach to find relevant parts
capturing expressive behaviour (i.e., for any expression) and
expression-specific behaviour (i.e., for specific expressions).
An alternative for the case of AU was presented by Jiang et
al. [5], who used a decision-level fusion approach to combine
region-specific classifiers. In this work we follow the same
approach, but replicating the structure for the case of ANNs
and replacing the weighted combination of regional decisions
with a decision layer learned from data. Our study hence is
one of the first to study how to learn region-specific weights
for the case of AU detection.



Fig. 2. Delaunay triangulation (left) using facial landmarks which is utilized
in defining a set of 27 facial regions (right). Image on the left has been taken
from [5].

III. METHODOLOGY

A. Facial regions

In this work, we have used the approach described by Jiang et
al. [5] to divide the face into distinct non-rectangular regions
using facial landmarks. The motivation for this approach is to
divide the entire face into a set of homogenous regions which
can capture the entire face and also offer good registration
properties across faces. Defining these regions in terms
of the facial landmarks guarantees that the facial regions
represented are homogeneous across faces. In particular, the
regions are construct using a Delaunay triangulation, dividing
the face in the same manner as that of Active Appearance
models (See figure 2). Since some of the resulting triangular
regions are too small to encode any relevant information,
they are merged together to form larger facial regions.
The sets of triangles which are fused, capture semantics of
facial actions as they were defined using domain knowledge
regarding FACS [4] AU definitions (each AU corresponds to
local appearance changes caused by activation of localised
facial muscles). The resulting facial regions are polygons of
variable shapes and sizes.

In this work, we follow the region definition described in
Jiang et al. [5], resulting in 27 distinct facial regions, shown
in Fig. 2. It is interesting to note that this representation
covers the whole face except the forehead. Although some
expressive information can be attained from the wrinkles of
the forehead, there are no facial landmarks enclosing this
region. However, partial occlusion of the forehead due to
facial hair is common, which might complicate their usage
for inference.

B. Decision Level Fusion in Artificial Neural Networks

In order to learn a classifier for facial AU recognition, we
use an Artificial Neural Network (ANN) whose topology is
designed to fuse features coming from different regions at
the top layer, i.e., the decision layer. The final decision value
for a test image is a weighted sum of the scores for each
region of the face. Thus, the face region level classifiers and
the weight for each classifier are learnt jointly in this ANN.
This network topology is shown on the left-hand side of Fig.

3. It consists of n input layers corresponding to n feature
vectors, computed from n facial regions. Each input layer
is connected to a separate unit in the hidden layers. Hence
the hidden layer has n units, each connected to a separate
input layer. This architecture is the ANN equivalent of late
or decision-level fusion.

The baseline against which we compare this architecture,
consists of a fully connected ANN (see the right-hand side
of Fig. 3), which is most typically used for classification
purposes. The fully connected architecture corresponds to
the feature-level fusion case.

The hidden layer, both in the proposed architecture and in
the baseline architecture, is followed by an output layer of
size 1 unit, so that each AU is learnt independently. Despite
ANNs being able to provide multi-dimensional outputs, this
would make it difficult to balance the training set in terms
of positive and negative examples.

C. Feature extraction and Learning

In order to learn the classifiers for facial AU detection,
appearance feature descriptors are extracted from each facial
region described in section III-A. Due to the varying shape of
each of these regions, we employ histogram-based features,
which result in a representation of constant dimensionality.
Hence, we get a set of feature vectors from each training
example. These feature vectors are used as input to our
proposed ANN described in section III-B. The network
parameters are learnt using the back propagation algorithm.

In the above method, one feature vector from each facial
region is fed into the corresponding input units. These input
units are connected to a single hidden unit. Hence each group
of these input and hidden units acts as a region specific sub-
classifier for the target AU detection. The weights in the final
layer indicates the relative importance of each sub-classifier
learnt by the ANN.

IV. EVALUATION

Databases: In order to demonstrate the advantage of our
proposed approach, we performed experimental evaluation
of our models using the MMI [15], Cohn-Kanade (CK) [8]
and the GEMEP-FERA [17] databases. Both the CK and the
MMI datasets contain videos of expressions posed on com-
mand and thus are not naturalistic. The recording conditions
are controlled, so that the subjects keep a frontal view to the
camera at all time. While the videos within the MMI dataset
contain full activation episodes, the videos within the CK
contain instead only the activation of the expression until
its apex. They are considered to be easy datasets, and they
serve the purpose of comparing the proposed architecture
with the baseline architectures. Instead, the GEMEP-FERA
dataset is more challenging. While the expressions are also
posed on command, the subjects are professional actors who
were free to decide how to display a set of emotions. Thus,
the conditions are more realistic. Different from MMI and
CK, the subjects do not keep a frontal head pose with respect
to the camera. Thus, this is considered to be a state-of-the-
art dataset in terms of its challenging conditions. It is within



Fig. 3. Topology of our proposed ANN (left) as compared to a conventional ANN (right) normally used for classification tasks. In contrast to a conventional
ANN, our ANN is not fully interconnected between the input layer and the hidden layer.

this dataset that we compare our approach to the performance
attained by Jiang et al. [5].
Pre-processing: In all of our experiments, the training and
testing images were pre-processed by detecting facial land-
marks using the method described in Xiong & De La Torre
[19]. This algorithm provides 49 inner-facial landmarks (i.e.,
no landmarks on the face contour are computed). Using these
landmarks, a face registration step is performed. In particular,
the facial landmarks that are stable under expressions (i.e.,
the corners of the eyes and the nose landmarks) are used
to register the face to some anchor landmarks (we used the
mean shape as the anchor landmarks). The registration is
attained using a Procrustes transformation, which accounts
for in-plane rotations, translations and uniform scaling.

Then, appearance feature descriptors are extracted from
each of the 27 facial regions described in section III-A. For
simplicity, we used the Local Binary Patterns (LBP) and,
in particular, the uniform LBP version [14] as the feature
descriptor. The uniform LBP is a 59-dimensional histogram.
We restricted ourselves to histogram-based features due to
the irregular shape of the regions where the features are
computed.
Artificial Neural Network parameters: The ANNs that
we employed in our experiments has a logistic sigmoid
activation function in the hidden units and in the output units.
For learning the parameters of the network, mean-squared
error was used as the loss function. An L2 regularisation
is used, and no early stopping is performed. The network
optimization was done using the Scaled Conjugate Gradient
Backpropagation algorithm [13].
Experiments: We conducted 2 different experiments for
evaluating the performance of our models for AU recognition

task. In the first experiment, we compared the performance
of our proposed partially connected ANN against fully
connected ANNs, which are generally used for classification
tasks and correspond to the feature-level fusion strategy.
Our second experiment compares the performance of our
approach with the approach used by Jiang et al. [5].

For the first experiment we used approximately 3000
images extracted from the video sequences from the MMI
and Cohn-Kanade datasets. These datasets were used to
compare the performance of our proposed architecture with
respect to the baseline architectures. Our baseline model
consists of a ANN which takes the concatenated features
from all facial regions defined by the facial landmarks. In
consequence, as opposed to our proposed ANN, the baseline
ANN is fully connected, i.e. each input unit is connected
to each and every hidden unit. We tried 2 different sizes of
the hidden layer for the baseline models. One baseline has
a hidden layer with 27 hidden units (same as our proposed
ANN model) and the other baseline network has a hidden
layer with 1000 hidden units. A 3-fold subject-independent
cross-validation was used to evaluate the performance on
these datasets. Since the learning of any ANN is sensitive to
initialization, therefore, we trained and tested our model 10
times for each AU and the median performance was reported.
We used the area under the Precision-Recall Curve (AUC)
as the performance measure for this experiment.

Table I shows the performance comparison of the baseline
models (with 27 and 1000 hidden units) and our proposed
model (partially connected with 27 hidden units) for 14
different AUs. Our approach shows superior performance in
11 out of the 14 AUs considered. The average performance
over all AUs is also higher for our approach. From the table,



AU 1 AU 12

Fig. 4. Visualization of the relative importance of each facial region
captured in the learnt weights between the hidden layer and the output
layer of our proposed ANN. On the left is the visualization for AU1 and on
the right is the visualization for AU12. For illustration purpose, the weights
here have been normalized to lie between 0 and 1.

it is clear that the decision level fusion approach in ANNs
performs better than the standard feature concatenation ap-
proach.

In the second experiment, we computed the performance
of our approach on the GEMEP-FERA dataset and compared
it with the approach used in Jiang et al. [5]. For this exper-
iment, we used only the training partition of this dataset.
The experiment was done for 12 different AUs and a leave-
one-subject-out cross validation was used to evaluate the
performance for each AU. Since Jiang et al. [5] reported the
results attained using the 2AFC scores as the performance
measure, we also adopt this criteria when reporting our
results. Table II shows the performance comparison of the
two approaches. Our approach shows higher performance
in 8 out of 12 AUs. The average performance over all
the 12 AUs is also significantly higher, which shows that
the joint learning of the region-specific classifiers and the
classifier weights using our proposed ANN performs better
than learning the classifier and their corresponding weights
separately using the method proposed in Jiang et al. [5].

Similar to Jiang et al. [5], we are also capable of visual-
ising which parts of the face are important for detecting any
given AU. It is important to note that these regions do not
need to be restricted to the regions where the corresponding
facial muscle produces an appearance change. Instead, the
relevant regions often correspond to AUs that frequently co-
occur with the target AU. Examples of this visualisation
process are shown in Fig. 4, for AU1 and AU12. We found
however that often the weights that were high on one side
of the face were low on the same region on the other side
of the face. This might reflect that the information between
both sides is more commonly redundant, and thus the reg-
ularisation term primes solutions where all the information
is extracted from only one region rather than having high
weights for both of the regions. This effect reflects the
fact that each of the region classifiers are indeed learnt in
conjunction to those of the other regions. However, it is
clear that such learned region-fusion weights would not allow
detection of uni-lateral AUs on the side of the face with low

AU Fully Connected
ANN (27 hidden
units)

Fully Connected
ANN (1000 hid-
den units)

Partially
Connected ANN
(Our method)

1 0.73 0.74 0.76
2 0.57 0.60 0.60
4 0.57 0.57 0.58
5 0.43 0.47 0.43
6 0.53 0.52 0.56
7 0.16 0.18 0.16
9 0.66 0.67 0.70
10 0.18 0.16 0.18
12 0.69 0.72 0.73
15 0.25 0.35 0.39
17 0.53 0.53 0.57
18 0.07 0.08 0.12
20 0.51 0.51 0.53
25 0.83 0.83 0.85

Mean 0.48 0.49 0.51

TABLE I
PERFORMANCE (AUC) COMPARISON OF A FULLY CONNECTED ANN

WITH THE PARTIALLY CONNECTED ONE (OUR METHOD), ON THE

MMI+COHN-KANADE DATABASE.

AU Jiang et al. [5] Our method
1 0.64 0.81
2 0.72 0.71
4 0.53 0.65
6 0.72 0.82
7 0.68 0.64

10 0.66 0.60
12 0.74 0.79
15 0.53 0.67
17 0.70 0.73
18 0.75 0.72
25 0.57 0.60
26 0.53 0.59

Mean 0.65 0.69

TABLE II
PERFORMANCE (2AFC) COMPARISON OF OUR METHOD WITH JIANG ET

AL. [5], ON THE GEMEP-FERA DATABASE.

weights. For e.g., a face image in which AU1 is activated
only on the left-hand side, will not get detected. The outcome
of these weights also reflects the fact that relatively little data
of asymmetric facial expressions is available.

V. CONCLUSIONS AND FUTURE WORKS

This paper provides further evidence of the good perfor-
mance attained by decision-level fusion strategies, attaining
superior performance compared to feature-level fusion. It
is also shown that an Artificial Neural Networks approach
can learn all the part-based classifiers and the weights
corresponding to the decision-level layer jointly. Further
experiments are required however, including varying fea-
tures, further combinations (e.g. part-based approach and
decision-level fusion) and experiments on more datasets.
Further experimentations with different ANN architectures
and parametrization might also result in better performance.
It also remains to be explored whether a decision-level fusion



strategy could be successfully applied to other AU-related
problems such as AU intensity estimation. Finally, it is
possible to extend the architecture to learn a combination of
region-specific parts, but where the parts are computed using
more than one appearance representation approach (i.e.,
include the holistic tile-based and the local representations).
Furthermore, geometric features could be also included in
the fusion.
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