
	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	1	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

Artificial	Retrieval	of	Information	Assistants	–	Virtual	Agents	with	Linguistic	
Understanding,	Social	skills,	and	Personalised	Aspects	

	
Collaborative	Project	

	
	

Start	date	of	project:	01/01/2015	 	 	 	 	 Duration:	36	months	
	
	

(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	

Due	date	of	deliverable:	Month	31	 Actual	submission	date:	28/09/2017	
	

	 	

ARIA	Valuspa	

	

	
	
	
	
	
	
	
	
	
	
	
	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	2	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

	
	
	

Project	co-funded	by	the	European	Commission		

Dissemination	Level		

PU	 Public	 X	

PP	 Restricted	to	other	programme	participants	(including	the	Commission	Services)	 	

RE	 Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission	services)	 	

CO	 Confidential,	only	for	members	of	the	consortium	(including	the	Commission	Services)	 	

STATUS:	[FINAL]	

Deliverable	Nature	

R	 Report	 	

P	 Prototype	 	

D	 Demonstrator	 X	

O	 Other	 	

	
Participant	
Number	

Participant	organization	name	 Participant	
org.	short	
name	

Country	
	

Coordinator	
1	 University	of	Nottingham,	Mixed	Reality/Computer	

Vision	Lab,	School	of	Computer	Science	
UN	 U.K.	

Other	Beneficiaries	
2	 Imperial	 College	 of	 Science,	 Technology	 and	

Medicine	
IC	 U.K.	

3	 Centre	 National	 de	 la	 Recherche	 Scientifique,	
Télécom	ParisTech	

CNRS-PT	 France	

4	 Universitat	Augsburg	 UA	 Germany	
5	 Universiteit	Twente	 UT	 The	Netherlands	
6	 Cereproc	LTD	 CEREPROC	 U.K.	
7	 La	Cantoche	Production	SA	 CANTOCHE	 France	

	
	
	
	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	3	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

	

	

	 	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	4	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

Table	of	Contents	
1.	PURPOSE	OF	DOCUMENT	 6	
2.	DIALOGUE	MANAGEMENT	 7	

2.1.1	DIALOGUE	STRUCTURE	 9	
2.1.2	OPERATIONAL	DIALOGUE	MANAGER	 12	
2.1.3	DECISION	MAKING	 13	
2.1.4	INTENT	PLANNING	FOR	AGENT	BEHAVIOUR	GENERATION	 15	

2.2	EXAMPLES	OF	TEMPLATES	 16	
2.2.1	EXAMPLE	MANAGEMENT	TEMPLATES	 16	
2.2.2	EXAMPLE	MOVE	TEMPLATES	 17	

2.3	DIALOGUE	ENGINE:	FLIPPER	2.0	 19	
2.3.1	STANDARDIZATION	 19	
2.3.2	OPTIMIZATION	 19	
2.3.3	USABILITY	AND	ERROR	HANDLING	 19	
2.3.4	FEATURES	 20	
2.3.5	PERSISTENCY	 20	

3.	PROGRESS	PER	TASK	 21	
3.1	MULTI-LINGUAL	NATURAL	LANGUAGE	UNDERSTANDING	 21	
3.2	TASK-ORIENTED	DIALOGUE	MANAGEMENT	 21	
3.3	USER-ADAPTIVE	DIALOGUE	STRATEGIES	 22	
3.3.1.	TURN	TAKING	 22	
3.3.2	VERBAL	ALIGNMENT	 23	

3.4	REINFORCEMENT	LEARNING	BASED	ON	USER	FEEDBACK	 24	
3.5	DEALING	WITH	UNEXPECTED	SITUATIONS	 24	
3.6	GENERATION	OF	DIALOGUES	FOR	BOOK	PERSONIFICATION	DEMONSTRATOR	 25	
3.6.1	QUESTION	GENERATION.	 25	
3.6.2	FOLLOW-UP	QUESTION	STRATEGY	 26	
3.6.3	USER	TEST	AND	NEXT	STEPS	 27	

3.7	GENERATION	OF	DIALOGUES	FOR	INDUSTRY	ASSOCIATE	DEMONSTRATOR	 28	
4.	CONCLUSIONS	AND	PLANS	FOR	NEXT	PERIOD	 29	
5.	OUTPUTS	 30	
REFERENCES	 31	

	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	5	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

	
	
	 	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	6	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

1.	PURPOSE	OF	DOCUMENT	
This	is	the	last	deliverable	for	Work	Package	3:	“Implementation	of	adaptive	task-based	
dialogue	 system”.	 The	 leader	 of	 this	 work	 package	 is	 UT,	 with	 involvement	 of	 the	
following	partners:	UON,	CNRS,	ICL,	UA,	CNT	and	CRPC.	
	
The	objectives	of	this	work	package	are	two-fold.	The	first	is	to	build	adaptive	and	task-
oriented	dialogues	 in	multiple	 languages	to	assist	 information	retrieval	 in	general,	and	
for	the	two	scenarios	(the	book	ARIA	and	the	Industry	ARIA)	in	particular.	The	second	
objective	 is	 to	build	a	 framework	 for	 information	retrieval	style	dialogue	management	
specification	that	can	be	used	outside	the	ARIA-VALUSPA	project	for	adaptive	dialogue	
construction.		
	
This	document	describes	the	last	version	of	the	dialogue	manager,	DM2.0,	and	the	steps	
taken	towards	this	version	of	the	dialogue	manager.	The	DM2.0	is	the	core	component	in	
the	(multilingual)	adaptive	dialogue	toolbox	that	will	be	released	at	the	end	of	the	ARIA	
project	 as	 part	 of	 the	 ARIA-VALUSPA	 Platform	 (AVP).	 We	 discuss	 the	 concepts	 and	
workings	of	the	toolbox.	
	
The	deliverable	is	structured	as	follows.	Section	2	of	this	deliverable	describes	DM2.0	in	
detail.	Section	3	describes	the	progress	on	all	tasks	of	this	work	package	that	were	not	
covered	in	Section	2.	In	Section	4	the	main	conclusions	are	presented	and	plans	for	the	
remainder	of	the	project	are	outlined.	Section	5	describes	the	outputs	of	the	past	period.		
	
	
	 	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	7	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

2.	DIALOGUE	MANAGEMENT	
In	this	section,	we	describe	the	new	version	of	dialogue	management	developed	in	the	
last	 period	 of	 the	 project	 (DM2.0).	Within	 dialogue	management	we	 distinguish	 three	
concepts:	
	

● Dialogue	Manager	(Management	templates)	
● Dialogues	(i.e.	scenarios	consisting	of	Move	templates)	
● Dialogue	Engine	(Flipper	2.0)	

	
The	Dialogue	Manager,	 described	 in	 detail	 in	 Section	 2.1,	 deals	 with	 how	 the	 agent	
behaves	 in	 an	 interaction.	 The	 Dialogue	 Manager	 consists	 of	 Management	 Templates	
that,	 for	 example,	 define	 the	 organisation	 of	 information	 in	 the	 information	 state.	 See	
Section	2.2.1	for	example	management	templates.		
Dialogues	 are	 used	 to	 describe	 the	 scenario	 that	 the	 agent	 knows	 about	 and	 can	
converse	about.	They	are	defined	in	a	Dialogue	Structure	consisting	of	Move	templates,	
described	in	detail	in	Section	2.1.1.	Section	2.2.2	shows	example	Move	templates.	
The	Dialogue	Engine,	described	in	detail	 in	Section	2.3,	consists	of	the	new	version	of	
Flipper.	 Flipper	 checks	 the	 dialogue	 templates	 that	 are	 used	 to	 define	 the	 Dialogue	
Management	in	the	ARIA	agent.		
	
	 	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	8	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

Figure	1:	DM
	2.0	Structure	

	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	9	-	
		

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

2.1	DIALOGUE	MANAGER	2.0	
We	have	designed	a	new	version	of	the	Dialogue	Manager	(DM	2.0)	that	takes	a	scenario	
and	situation-driven	approach	to	creating	dialogue	structures	based	on	conversational	
acts.	 	 It	 shares	 some	 properties	 with	 current	 tools	 for	 the	 development	 of	 dialogues,	
such	 as	 the	 use	 of	 dialogue	 trees	 from	DISCO	 (Rich	 and	 Sidner,	 2012)	 and	 the	 use	 of	
question-answer	matching	for	 information	retrieval	 from	the	NPC	Editor	of	the	Virtual	
Human	Toolkit	 (Leuski	 and	Traum,	2011).	 Similar	 to	 the	FLoReS	dialogue	manager	of	
Morbini	et	al.	(2014),	the	DM	2.0	has	been	set	up	to	facilitate	the	creation	of	structured	
dialogues	with	the	use	of	domain	experts.		
Below	we	first	describe	the	way	the	information	in	the	Dialogue	Manager	is	structured	
(the	 Dialogue	 Structure,	 Section	 2.1.1)	 and	 what	 information	 is	 present	 in	 the	
operational	system	(Section	2.1.2).	After	this,	we	describe	how	the	decision	to	perform	
specific	 agent	 behaviour	 is	 made	 (Section	 2.1.3)	 and	 how	 intent	 planning	 is	 done	
(Section	 2.1.4).	 The	 conceptual	 components	 of	 the	 Dialogue	 Manager	 and	 the	
information	flow	between	them	are	depicted	in	Figure	1.	
The	model	has	been	developed	and	 implemented	 in	Flipper	2.0	 (see	 Section	2.3),	 and	
currently	a	few	example	dialogues	have	been	authored.	DM2.0	will	be	used	as	the	basis	
for	the	development	of	the	industry	ARIA	(Section	3.7).			

2.1.1	DIALOGUE	STRUCTURE	
Dialogues	are	defined	in	terms	of	hierarchical	dialogue	acts	 in	a	Dialogue	Structure,	as	
shown	in	Figure	2:		

● Dialogue	 structure:	 this	 is	 the	 root.	 The	 name	 should	 refer	 to	 the	 name	 of	 the	
character.	

● Episode:	the	first	tier	consists	of	episodes.	An	episode	covers	a	phase	(or	a	very	
general	 topic)	of	 a	 conversation	 (e.g.	 social,	Q&A,	 reading	along	with	 the	agent,	
unexpected	situations)	

● Episode.Exchanges:	 episodes	 are	 made	 up	 of	 exchanges	 that	 are	 related	 to	 a	
specific	topic	in	the	episode	(e.g.	two	or	more	utterances	about	the	same	topic)	

● Episode.Exchanges.Moves:	 the	 lowest	 tier	 consists	 of	 moves.	 An	 exchange	 is	
made	up	of	several	moves.	These	correspond	to	conversational	acts,	based	on	the	
DIT++	 standard	 (Bunt	 et	 al.,	 2012).	 A	move	 can	 be	 realized	with	 an	 utterance,	
nonverbal	behaviour,	or	a	combination	of	the	two.	A	move	has	a	goal	that	can	be	
achieved	 by	 the	 behaviour	 and	 a	 status	 for	 that	 goal.	 Moves	 are	 selected	 for	
execution	 based	 on	 how	 relevant	 they	 are	 to	 the	 situation	 in	 the	 conversation.	
Rules	define	when	a	move	becomes	relevant.	

	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	10	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

Figure	2:	The	hierarchical	dialogue	structure.	
	
Moves	are	 the	atomic	unit	 (dialogue	 item)	 in	 the	Dialogue	Manager	 (DM).	A	move	can	
refer	 to	 a	move	 (a	 dialogue	 act)	 of	 the	 user	 or	 the	 agent.	 A	move	 can	 be	 listening	 or	
speaking,	 depending	 to	 its	 DIT++	 category.	 We	 distinguish	 three	 types	 of	 moves,	
depending	on	the	information	they	carry:	

● Content/Dialogue	Act	(C):	C-Moves	deal	with	information	exchange.	They	contain	
the	 content	 of	 what	 the	 agent	 or	 user	 said,	 for	 example	 if	 the	 user	 asked	 the	
question	“what	can	you	tell	me	about	Alice	in	Wonderland?”.	

● Interaction	 Management	 (I):	 I-Moves	 contain	 information	 that	 is	 about	 the	
interaction,	 for	 example	 turn-management	 or	 establishing	 contact	 between	 the	
user	and	agent.	They	correspond	to	the	Interaction	Management	functions	of	the	
DIT++	taxonomy	of	dialogue	acts.	

● Socio	Emotional	(S):	S-Moves	express	the	social	and	emotional	state	of	the	agent	
or	 user,	 for	 example	 an	 increase	 in	 dominance	 or	 a	 decrease	 in	 sentiment.	 In	
DIT++	 these	 are	 seen	 as	 qualifiers	 of	 dialogue	 acts;	 however	 we	 see	 them	 as	
moves	since	they	can	have	specific	(often	nonverbal)	behaviours	associated	with	
them.		

	
Additionally,	the	content	moves	for	the	agent	are	further	divided	depending	on	the	type	
of	content	that	is	contained	within	the	move.	This	division	helps	with	planning	the	agent	
moves	(for	example	combining	content	with	an	opinion)	and	helps	a	dialogue	scenario	
author	to	keep	track	of	what	purpose	a	move	has:	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	11	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

● Content	 (C-tag):	 This	 is	 the	 type	 of	 C-Move	 that	 contains	 information	 from	 the	
book,	 for	 example	 what	 events	 happened	 and	who	 Alice	 has	met.	 An	 example	
would	be:	“When	I	saw	the	White	Rabbit,	I	chased	him	into	a	rabbit	hole.”		

● Opinion	(O-tag):	A	C-Move	with	an	opinion	tag	contains	an	opinion,	for	example	
Alice’s	opinion	about	events	or	 characters	 from	 the	book,	 such	as:	 “I	 thought	 it	
was	rather	strange	to	see	a	white	rabbit	with	a	watch.”	

● Meta	 information	 (M-tag):	 A	 C-Move	 with	 a	 meta	 information	 tag	 contains	
information	on	a	meta	 level	about	 the	 interaction.	Using	 such	moves,	 the	agent	
can	talk	about	 the	 interaction,	 for	example	during	a	 lull	 in	 the	conversation	the	
agent	might	say	“Do	you	want	to	continue	talking	about	this?”.	

	
The	DM	has	been	designed	with	authoring	in	mind.	An	author	can	create	dialogues	(i.e.	
episodes,	 exchanges,	 moves	 of	 the	 agent)	 without	 needing	 expert	 knowledge	 about	
dialogue	 systems.	 In	 general,	 an	 author	 only	 needs	 to	 specify	 a	 situation	 (e.g.	 a	 new	
unknown	user	appears,	 smiles,	 and	says	 “Hello”)	and	what	an	agent	 should	do	 in	 that	
situation	(e.g.	smile	and	say	“Hello,	nice	to	meet	you!”).		
A	move	has	different	attributes,	some	of	which	need	to	be	filled	in	by	an	author,	others	
can	be	computed	automatically.	The	following	attributes	need	to	be	authored:1	
	

● Name:	 the	 path	 in	 the	 dialogue	 structure	 (e.g.	 kb1.episode1.exchange1.move1).	
We	suggest	basing	the	name	on	the	goal	of	the	dialogue	item.	

● AgentGoal:	[DIT++].exchange	name	(e.g.	info_request.QATopic)	
● AgentBehaviour:	verbal	or	non-verbal	behaviour.	
● ContentType:	meta	|	content	|	opinion	
● PreconditionRules	(specific):		

o Preconditions	that	control	dialogue	flow.	For	example,	after	greeting	the	
user,	it	makes	sense	for	the	agent	to	suggest	to	the	user	an	action	to	take	
or	to	introduce	a	topic.	

o Specific	User	Utterances	to	which	the	move	would	be	an	appropriate	
response.	For	example,	the	user	utterance	“how	are	you	doing”	is	a	good	
indicator	that	a	move	that	has	AgentBehaviour	“I’m	doing	great,	thank	you	
for	asking”	is	relevant.	

	
A	move	has	the	following	attributes	that	can	be	computed	automatically	(in	most	cases)	
before	 an	 interaction.	 They	 can	 also	 be	 authored	 if	 needed,	 or	 computed	 during	 an	
interaction:	
	

																																																								
1	Some	of	these	attributes	apply	only	to	C-moves.	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	12	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

● GoalStatus:	This	refers	to	whether	or	not	the	goal	of	the	move	has	been	
completed	or	accomplished,	and	is	updated	during	the	interaction	for	every	
move.	

● RefersTo:	The	owner	(agent	|	user)	of	the	move	
● Relevance:	A	value	[0..1]	calculated	during	the	interaction.	
● AgentForwardGoal:	[DIT++].exchange	name	(e.g.	attention.QATopic).	This	is	the	

agent’s	planned	dialogue	act	that	is	used	to	plan	the	next	moves	and	can	be	
automatically	determined	using	adjacency	pairs	and	floor	management	or	turn-
taking	rules.	For	example,	for	a	move	with	as	goal	an	information_request	(i.e.	a	
question),	the	forward	goal	of	the	agent	would	be	attention	(i.e.	listen	to	the	
answer).	

● UserExpectedGoal:	[DIT++].exchange	name	(e.g.	i.QATopic).	This	is	what	the	agent	
the	user’s	current	dialogue	act	will	be	and	can	be	used	to	make	a	dialogue	plan.	
For	example,	when	the	agent	is	talking,	we	expect	the	user	to	be	quiet.	

● UserForwardExpectedGoal:	[DIT++].exchange	name	(e.g.	inform_answer.QATopic).	
This	goal	is	what	the	agent	thinks	the	user’s	next	dialogue	act	will	be.	This	can	be	
used	to	create	a	dialogue	plan.	For	example,	after	the	agent	has	asked	a	question,	
we	expect	the	user	to	start	talking.	

● PreconditionRules	(general):		
o General	preconditions	(rules	that	apply	to	most	moves):	For	example,	it	

doesn’t	make	sense	for	the	agent	to	talk	when	no	user	is	present.	
o Situation	Specific	preconditions	(rules	that	apply	to	some	moves	or	to	

moves	in	some	case).	For	example,	it	doesn’t	make	sense	for	the	agent	to	
speak	right	after	it	has	asked	a	question.	

	
An	example	of	a	Move	Template,	with	explanation,	can	be	found	in	Section	2.3.2.	

2.1.2	OPERATIONAL	DIALOGUE	MANAGER	
The	Dialogue	Engine	(Flipper)	stores	all	information	the	agent	knows	in	the	information	
state.	Information	comes	from	various	sources	and	is	represented	in	the	form	of	Moves.	
During	 an	 interaction,	 the	moves	 of	 the	 user	 are	 created	 by	 the	 system	 via	 the	 Input	
Processing	component	(see	Figure	1).	Some	examples	of	user	moves	are:	

● The	 user	 has	 started	 speaking,	 detected	 by	 the	Voice	Activity	Detection:	 an	 I-
type	 user	move	 is	 generated	 stating	 that	 the	 user	 has	 started	 speaking	 (and	
possibly	that	this	is	an	interruption	when	the	agent	is	also	speaking).	

● The	 user	 has	 spoken,	 and	 the	 automatic	 speech	 recognition	 (ASR)	 outputs	 a	
word	string:	a	C-type	user	move	is	generated	holding	the	ASR	output.	

● The	user	has	started	smiling,	the	SSI	updates	the	valence	of	the	user’s	affective	
state:	an	S-type	user	move	is	generated	holding	the	valence.	

	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	13	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

Additionally,	 information	 about	 the	agent’s	 actions	 is	 received	 as	 input	 (i.e.	 feedback)	
from	 the	 behaviour	 realiser.	 The	 behaviour	 realiser	 (e.g.	 Greta)	 sends	 continuous	
feedback	about	what	behaviour	has	been	carried	out.	Feedback	can	be:	

● BML	Callbacks:	the	BML	realiser	sends	information	about	which	behaviour	(BML	
block)	has	started,	ended,	or	has	been	stopped.	

● Time	Markers	Callbacks:	during	the	agent	behaviour,	the	realiser	sends	feedback	
on	the	exact	timing	of	each	behaviour	that	 is	executed.	This	 is	done	using	time-
markers	(see	Section	2.2.4).	For	agent	utterances,	this	is	done	on	word	level.		

	
The	feedback	allows	the	Input	Processing	to	keep	track	of	the	floor	(i.e.	turn-taking)	and	
the	completion	of	the	goals	of	the	agent.	For	example,	knowing	from	the	feedback	when	
the	agent	has	stopped	speaking	and	knowing	 from	the	ASR	when	 the	user	has	started	
speaking	allows	us	to	determine	whether	there	is	overlapping	speech	and	thus	whether	
the	user	 interrupted	 the	 agent.	Additionally,	 the	 time	markers	 allow	us	 to	know	what	
part	 of	 the	 agent	 utterance	 has	 been	 said	 uninterrupted	 (and	 thus	 was	 heard	 by	 the	
user)	 and	 what	 part	 was	 not	 heard	 because	 it	 was	 interrupted.	 The	 agent	 might	
concatenate	moves,	 for	example	a	C-tagged	C-move	 (“The	White	Rabbit	had	a	watch”)	
with	 an	 O-tagged	 C-move	 (“I	 liked	 that	 watch”).	 Time	 marker	 feedback	 is	 used	 to	
determine	 whether	 the	 goal	 of	 the	 agent’s	 move	 was	 accomplished:	 if	 the	 agent	 was	
interrupted	 before	 it	 could	 complete	 the	 utterance,	 the	 goal	 of	 the	 move	 (e.g.	 of	
conveying	 this	 information)	 is	 not	 accomplished.	 This	might	mean	 that	 the	 agent	will	
repeat	itself.	

2.1.3	DECISION	MAKING	
Moves	have	rules	that	determine	when	the	move	becomes	relevant.	The	agent	selects	its	
moves	based	on	their	relevance.		We	view	relevance	as	the	utility	value	of	a	move,	where	
the	 agent	 is	 trying	 to	maximize	 the	 utilities	 of	moves	 and	 selects	 the	moves	with	 the	
highest	 relevance	 above	 a	 certain	 threshold.	 This	 threshold	 is	 dynamic	 and	decreases	
when	for	a	certain	amount	of	time	no	move	has	been	performed	and	increases	when	the	
agent	is	speaking.		
	
The	relevance	of	a	move	gets	updated	by	the	Agent	Move	Updater.	Relevance	is	based	on	
the	rules	in	the	move.	When	a	rule	(defined	in	the	preconditions	of	the	Flipper	template)	
is	met,	the	relevance	of	the	move	increases.	Additionally,	the	relevance	of	a	move	goes	
up	when	the	user	utterance	matches	one	of	the	utterances	to	which	this	move	would	be	
an	 appropriate	 response,	 as	 predefined	 in	 the	 move.	 This	 is	 an	 extension	 of	 the	 QA	
(question-answer)	Matcher	 introduced	in	the	previously	delivered	version	of	 the	ARIA	
software	 (see	 also	 Section	 3.6).	 Furthermore,	 relevance	 of	 a	move	 increases	 if	 closely	
related	 moves	 (e.g.	 moves	 in	 the	 same	 exchange)	 become	 more	 relevant.	 We	 use	
Management	templates	in	Flipper	to	update	the	relevance	of	the	dialogue	structure.	
	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	14	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

The	Agent	Move	Selector	keeps	track	of	 the	relevance	of	all	 the	moves	 in	the	Dialogue	
Structure.	It	selects	the	move	with	the	highest	relevance	above	the	threshold	and	sends	
this	move	 to	 the	Move	 Planner.	 Additionally,	 it	 sends	 the	 selected	move	 to	 the	Move	
Generator	(see	Figure	1)	for	execution	by	the	agent	embodiment	(see	Section	2.2.4).	
	
The	Move	Planner	keeps	track	of	the	current	agent	move	and	the	planned	agent	move.	It	
gets	information	from	the	move	selector	and	the	Input	Processing	modules	for	observed	
and	 predicted	 user	 moves.	 The	 agent	 keeps	 track	 of	 five	 moves	 at	 any	 time	 for	 the	
decision-making	process:	
	

● The	current	agent	move.	This	is	the	move	which	the	agent	is	currently	carrying	
out,	for	example	asking	a	question	or	showing	attentive	listening	behaviour.	

● The	 planned	 agent	 move.	 This	 represents	 the	 agent’s	 forward-looking	 move.	
The	agent	has	a	prediction	of	what	its	next	move	may	be	and	puts	this	move	in	its	
behaviour	plan.	This	is	planned	based	on	the	current	agent	move,	using	adjacency	
pairs.	For	example,	the	agent	will	most	likely	perform	listening	behaviour	after	it	
has	asked	the	user	a	question.	

● The	expected	user	move.	Based	on	the	current	agent	move,	we	expect	the	user	
to	 behave	 in	 some	 way	 during	 the	 agent’s	 move.	 Expectations	 can	 be	 based,	
among	 other	 things,	 on	 turn-taking	 rules	 (e.g.	 one	 speaker	 at	 a	 time).	 For	
example,	when	we	are	talking	we	expect	the	user	to	listen.		

● The	observed	user	move.	This	 is	created	via	the	Input	Processing	module.	For	
example,	if	in	the	previous	turn	the	agent	has	asked	a	question	and	voice	activity	
is	detected,	it	is	most	likely	that	the	user	is	now	informing	us	of	the	answer.	

● The	expected	user’s	next	move.	This	expectation	of	what	the	user	will	do	next	is	
created	 based	 on	 the	 agent’s	 current	 move	 and	 the	 observed	 user	 move.	 An	
example	is	when	the	agent	is	asking	a	question,	observes	that	the	user	is	paying	
attention,	and	expects	the	user	to	give	an	answer	in	the	next	turn.	

	
The	 Move	 Planner	 checks	 whether	 the	 plan	 is	 still	 correct:	 are	 the	 expected	 and	
observed	user	move	 the	 same?	When	 this	 is	not	 the	 case,	 a	 re-plan	 is	needed	and	 the	
Move	Planner	requests	the	Agent	Move	Updater	to	re-evaluate	all	moves	with	the	new	
situation.	
	
Summarizing,	deciding	what	move	of	the	agent	should	do	is	done	by	three	components,	
see	Figure	1:	
	

● The	Agent	Move	Updater	uses	all	 the	available	 information	 in	 the	 information	
state	 to	update	 the	 relevance	of	 each	 agent	move	 in	 the	dialogue	 scenario	 (see	
Section	2.2.1)	when	the	Move	Planner	calls	for	an	update.	

● The	Agent	Move	Selector	selects	the	most	relevant	move,	after	the	Agent	Moves	
have	 been	 updated	 and	 one	 or	more	moves	 exceed	 the	 relevance	 threshold.	 It	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	15	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

sends	the	most	relevant	move	to	the	Move	Planner,	and	prepares	for	its	execution	
(see	Section	2.2.4).	

● The	 Move	 Planner	 keeps	 a	 plan	 of	 the	 moves	 that	 have	 been	 selected	 for	
execution	by	the	agent	and	determines	which	moves	are	expected	from	the	user.	
When	the	plan	is	finished,	or	the	expected	user	move	is	not	observed,	the	Move	
Planner	calls	for	an	Agent	Move	Update	(which	constitutes	a	re-plan).	

	

2.1.4	INTENT	PLANNING	FOR	AGENT	BEHAVIOUR	GENERATION	
Once	an	agent	move	has	been	selected	and	put	in	the	Move	Planner,	the	Move	Generator	
translates	 this	 move	 to	 FML-APML.	 First,	 the	 agent’s	 verbal	 utterance	 (if	 present)	 is	
extracted	 from	 the	 selected	 move,	 and	 time	 markers	 are	 added	 to	 it.	 Secondly,	 the	
emotion	of	the	agent	is	set,	based	on	the	current	emotional	state	of	the	agent	stored	in	
the	information	state.	Furthermore,	additional	parameters	(e.g.	backchannel,	stance)	in	
the	move	 can	 be	 used	 to	 fill	 the	 placeholders	 in	 the	 FML-templates.	 Finally,	 we	 have	
implemented	a	natural	language	generation	module	that	can	adapt	the	verbal	content	of	
an	 agent	 move	 to	 align	 it	 to	 the	 user’s	 word	 choice.	 The	 module	 takes	 the	 dialogue	
history	 into	 account	 and	 tries	 to	 align	 the	 agent’s	 utterance	 to	 the	 user’s	 utterances.	
More	details	on	this	module	can	be	found	in	Section	3.3.	
	
	 	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	16	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

2.2	EXAMPLES	OF	TEMPLATES	

2.2.1	EXAMPLE	MANAGEMENT	TEMPLATES	
Here	we	show	two	examples	of	management	templates	in	Flipper	2.0.	The	first	example	
is	a	template	that	passes	a	user	utterance	to	the	QA	matching	module,	when	the	user	has	
made	a	content	move:	
	
<template id=”001” name=”answerQuestion>
 <preconditions>

<condition>is.states.user.lastMove.type == c </condition>
 </preconditions>
 <effects>
 <method persistent=”is.states.modules.QAMatcher”
is=”is.states.agent.say.answer” class=”eu.aria.dm.modules.QAMatcher”
name=”findBestAnswer”>
 <arguments>
 <value class=”String”
is=”is.states.user.say.utterance”
 </arguments>
 </method>
 </effects>
</template>

The	 second	 example	 is	 a	 template	 that	 makes	 the	 agent	 listen	 after	 it	 has	 asked	 a	
question.	This	template	 is	part	of	a	 larger	collection	of	 interaction	state	templates	that	
indicate	when	the	agent	should	perform	a	listening	or	talking	behaviour:

<template id=”101” name=”updateInteractionState>
 <preconditions>
 <condition>is.states.agent.say.askedQuestion</condition>
 </preconditions>
 <effects>
 <assign is=”is.states.agent.interactionState”>listen</assign>
 </effects>
</template>
	 	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	17	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

2.2.2	EXAMPLE	MOVE	TEMPLATES	
Below	we	show	an	example	of	a	possible	dialogue	move	by	the	agent.	 In	this	 instance,	
the	agent	makes	suggestions	for	a	topic.		
	

{"Episode":	
			"Goal":	"Social",	
			{"Exchange":	
	 		"Goal":	"TopicManagement"	
	 		{"Move":	

"Goal"	:	"Agent_topic_suggestions",	 	 	 	 	 	
"UU":	[

"What	can	you	do?",	
		 	 "What	can	you	tell	me?",	
		 	 "What	else	can	you	tell	me?",	
		 	 "Do	you	know	other	things?"	
],	
		 "Rules":	"silence	>	5	||		

QA.$prev_exchange	==	completed	&&	
prev_episode	==	QA",	

		 "AB":	[
		 	 "Well,	I'd	like	to	talk	about	$!prev_topic.	OK?",	
		 	 "What	do	you	think	about	$!prev_topic?",	
		 	 "Do	you	know	$!prev_topic?"	
],	
		 "Type":	"M"	

}}}	

	
This	move	 is	 part	 of	 episode	 “Social”,	 and	 part	 of	 exchange	 “TopicManagement”.	 The	
move	 is	 called	 Social.TopicManagement.Agent_topic_suggestions	 (which	 is	 a	
concatenation	 of	 the	 goals	 of	 the	 hierarchy).	 UU	 refers	 to	User	Utterances	 that	would	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	18	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

make	this	move	relevant	(i.e.	to	which	it	would	be	an	appropriate	response).	The	Rules	
refer	 to	situations	 in	which	 this	move	 is	 relevant.	 In	 this	 case,	either	 there	has	been	a	
silence	 that	 lasted	 longer	 than	 5	 seconds,	 or	 the	 previous	 exchange	 was	 part	 of	 the	
episode	 “QA”	 and	 it	 has	 been	 exhausted	 (i.e.	 all	 moves	 in	 this	 exchange	 have	 been	
executed).	AB	refers	to	the	AgentBehaviour	that	would	be	appropriate	behaviour	in	the	
given	 context.	 The	 Type	 refers	 to	 what	 sort	 of	 content	 this	move	 has,	 in	 this	 case	M	
(Meta	Information):	this	move	talks	about	the	conversation	on	a	meta	level,	in	this	case	
determining	what	to	talk	about.	
	
Another	type	of	episode	we	have	designed,	and	which	can	be	reused	in	many	different	
dialogue	scenarios,	is	called	“SafetyZone”.	In	this	episode,	the	agent	tries	to	restore	the	
conversation	 after	 it	 has	 broken	 down,	 for	 example	 because	 the	 agent	 does	 not	
understand	the	user	or	because	no	user	activity	is	detected.	The	agent	will	stay	`safe’	in	
this	episode	until	it	discovers	a	rule	that	moves	it	to	another	episode.	The	SafetyZone	is	
designed	 to	 keep	 the	 user	 engaged	 and	 to	 prevent	 the	 agent	 from	 making	 repeated	
statements	such	as	“I’m	sorry,	I	don’t	know”	or	“I’m	sorry,	I	do	not	understand”.	
	
An	example	of	a	move	in	this	episode	is	shown	below.	Whenever	the	agent	does	not	see	
the	user	anymore,	or	the	user	has	been	looking	away	for	some	time,	the	agent	will	try	to	
re-establish	contact.	
	
{"Episode":	
					"Goal":	"SafetyZone",	
					{	
						"Exchange":	
									"Goal"	:	"Contact"	
				 {	
																"Move"	:	
				 								"Goal"	:	"reestablish_contact",	
				 								"UU"	:	[],	
				 								"Rules"	:	["face_presence	=	false",	
				 	 	 	 	 							"agent_turn	=	true",	
				 	 	 	 	 							"engagement	=	true",	
				 	 	 	 		 							“history=true”	
],	
																						“AB”:	“Hello,	still	there?”				 	 	 		
				 	}	
							}	
}	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	19	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

	

2.3	DIALOGUE	ENGINE:	FLIPPER	2.0	
To	check	the	dialogue	templates	that	define	the	Dialogue	Management	in	the	ARIA	agent	
we	 make	 use	 of	 Flipper	 (ter	 Maat	 and	 Heylen,	 2011;	 see	 also	 D3.2).	 Flipper	 is	 an	
information-state	based	dialogue	engine	that	updates	the	dialogue	context	and	decides	
on	 which	 action	 the	 agent	 should	 take,	 similar	 to	 the	 implementation	 of	 FLoReS	
(Morbini	 et	 al	 (2014).	 In	 the	 past	 months,	 we	 have	 developed	 a	 new	 version	 of	 the	
dialogue	 engine	 (Flipper	 2.0).	 This	 new	 version	 improves	 the	 original	 in	 several	
respects.	To	make	it	more	robust,	versatile	and	easy	to	use,	the	following	new	features	
have	been	added	in	Flipper	2.0:	
	

● Standardization	(JSON,	JavaScript)	
● Optimization	
● Usability	and	error	handling	
● Features	
● Persistency	

2.3.1	STANDARDIZATION	
We	have	changed	 the	 representation	of	 the	 information	 state	 from	a	 custom	designed	
Java-model	 to	 JSON,	 hence	 making	 it	 easier	 for	 different	 modules	 of	 the	 Dialogue	
Manager	to	retrieve	information	from	the	information	state.	
	
Furthermore,	 we	 have	 replaced	 Flipper’s	 old	 system	 for	 evaluating	 template	
preconditions	 by	 JavaScript	 evaluation,	 making	 it	 possible	 for	 users	 to	 use	 both	 self-
written	 JavaScript	 or	 load	 JavaScript	 libraries.	We	 kept	 the	 XML	 format	 as	 similar	 as	
possible	to	the	previous	Flipper,	because	we	found	that	XML	is	the	best	readable	format	
for	non-technical	people	who	still	want	to	write	custom	templates.	
	
Finally,	 input	 modules	 send	 user	 input	 in	 standardized	 formats	 (XML	 or	 JSON).	 This	
makes	it	easier	to	put	the	user	input	into	the	information	state.	

2.3.2	OPTIMIZATION	
The	previous	version	of	Flipper	made	very	 frequent	use	of	parsing	and	evaluation	but	
did	 not	 use	 many	 standard	 libraries	 for	 this.	 We	 have	 upgraded	 this	 to	 run	 more	
efficiently	(lazy	evaluation	and	use	of	standard	libraries	for	parsing	XML	and	JSON).	This	
reduced	the	code	by	at	least	30%	and	made	it	also	more	readable	for	maintenance.	

2.3.3	USABILITY	AND	ERROR	HANDLING	
The	templates	of	the	first	version	of	Flipper	can	still	be	used	in	the	new	version,	as	the	
versions	are	backwards	compatible.	The	components	used	by	a	particular	template	(e.g.	
parts	of	 the	 information	state	or	 functions	called)	are	always	defined	or	referred	to	 in	
the	templates,	so	that	the	author	only	needs	to	check	a	particular	template.He	does	not	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	20	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

have	 to	 search	 through	 all	 the	 code	 and	 templates	 to	 find	 out	 what	 the	 impact	 is	 of	
changing	said	template.	
	
Error	 handling	 has	 been	 implemented	 with	 precise	 notifications	 if	 something	 went	
wrong,	 making	 it	 easier	 for	 other	 developers	 to	 find	 errors	 in	 their	 connected	 Java-
modules	or	XML-templates.	Also,	it	is	possible	to	retrieve	certain	system	parameters	for	
checking	which	template	has	been	used,	which	is	useful	for	testing	purposes.	

2.3.4	FEATURES	
In	 the	 first	 version	 of	 Flipper,	 it	 was	 not	 easy	 to	 use	 external	 modules	 (e.g.	 natural	
language	understanding	and	generation)	and	all	reasoning	and	logic	for	the	agent	was	in	
the	templates.	We	can	now	create	templates	that	can	use	external	modules	to	do	more	
complex	calculations	without	 cluttering	 the	 templates,	which	should	only	describe	 the	
dialogue	structure	on	a	higher	level.		
	
As	mentioned	before,	JavaScript	is	now	a	part	of	Flipper	2.0.	This	feature	improves	the	
flexibility	 of	 defining	 preconditions	 and	 manipulating	 the	 information	 state.	
Furthermore,	existing	JavaScript	libraries	can	be	added	easily.		

2.3.5	PERSISTENCY	
In	Flipper	2.0,	the	information	state	can	only	be	changed	from	within	Flipper	templates,	
no	 longer	 from	 outside	 classes.	 A	 database	 connection	 has	 been	 made	 possible	 with	
PostgreSQL.	We	 commit	 and	 store	 the	 information	 state	 in	 this	 database,	 so	 that	 the	
information	state	can	be	retrieved	or	checked	when	it	has	changed	(e.g.	for	checking	logs	
of	 agent	 behaviours)	 or	 be	 restored	 when	 data	 becomes	 corrupted	 (e.g.	 when	 the	
Internet	connection	fails).	This	is	called	persistency.	It	makes	the	system	more	robust	to	
unwanted	behaviour.		
	
Because	all	the	information	that	 is	 in	the	information	state	at	some	moment	during	an	
interaction	is	kept	in	the	database,	we	could	use	it	to	restore	the	dialogue	to	a	previous	
state,	for	example,	the	state	when	the	current	user	had	a	previous	conversation	with	the	
system.	This	makes	it	possible	for	the	agent	to	refer	to	this	previous	conversation	or	for		
the	user	 and	 agent	 to	 continue	 their	 conversation	where	 they	 left	 off.	 	 (Implementing	
this	type	of	behaviour	is	future	work.)	
	
Furthermore,	we	can	store	various	kinds	of	background	knowledge	in	the	database.	We	
can	use	it	to	store	all	long-term	information,	compared	to	short-term	information	in	the	
information	 state.	 For	 example,	 the	 full	 dialogue	 history	 and	 all	 previous	 user	
demographic	information	can	be	stored	in	the	database.	
	
	 	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	21	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

3.	PROGRESS	PER	TASK	
In	 this	 section,	 we	 discuss	 the	 progress	 per	 task	 that	was	 not	 covered	 earlier	 in	 this	
document.	

− Task	3.1,	Multi-lingual	natural	language	understanding		
− Task	3.2,	Task-oriented	dialogue	management	
− Task	3.3,	User-adaptive	dialogue	strategies	
− Task	3.4,	Reinforcement	learning	based	on	user	feedback	
− Task	3.5,	Dealing	with	unexpected	situations	
− Task	3.6,	Generation	of	Dialogues	for	Book	Personification	demonstrator	
− Task	3.7,	Generation	of	Dialogues	for	Industry	Associate	demonstrator	

	

3.1	MULTI-LINGUAL	NATURAL	LANGUAGE	UNDERSTANDING	
This	task	concerns	the	extension	of	the	ARIA-VALUSPA	agent's	shallow	natural	language	
understanding	 skills	 to	 handle	 the	 three	 natural	 languages	 targeted	 by	 the	 project:	
English,	French	and	German.	
Three	different	Automated	Speech	Recognition	(ASR)	modules	have	been	developed	to	
recognize	speech	in	English,	German	and	French.	Recognized	word	strings	are	put	in	the	
information	 state,	 and	 the	 Input	 Processing	 component	 of	 the	 dialogue	 system	 is	
informed	of	the	new	user	utterance.	The	Input	Processing	component	then	tries	to	map	
the	user	utterance	to	the	user	utterances	defined	in	the	moves	(see	UU	in	the	example	
template	 from	 Section	 2.3.2),	 which	 are	 currently	 only	 in	 English.	 To	 make	 this	
multilingual,	the	utterances	of	both	the	agent	and	user	will	be	translated	to	the	foreign	
languages.		
The	mapping	of	recognized	user	utterances	to	user	utterances	specified	in	the	templates	
is	 currently	 done	 in	 a	 language-independent	 fashion	 by	 measuring	 unigram	 	 overlap	
between	the	strings;	it	does	not	involve	syntactic	or	semantic	parsing	and	therefore	does	
not	 require	 any	 language-dependent	 resources.	 Therefore	 simply	 translating	 the	
templates	 is	 sufficient	 to	 have	 dialogues	 in	 French	 or	 German	 in	 addition	 to	 English.	
Future	 users	 of	 the	 system	 can	 author	 the	 dialogue	 templates	 in	 their	 preferred	
language,	provided	that	an	ASR	component	and	a	TTS	component	are	available	for	that	
language.	For	non-verbal	behaviour,	we	make	the	simplified	assumption	that	there	is	no	
difference	amongst	the	different	languages.		

3.2	TASK-ORIENTED	DIALOGUE	MANAGEMENT	
This	 task	 involves	 the	 implementation	 of	 an	 information	 state-based	 architecture	 for	
dialogue	management	that	can	run	different	dialogue	management	dimensions	in	
parallel,	 focusing	 on	 interaction	 management	 aspects	 such	 as	 turn	 taking,	 repair	
mechanisms,	and	floor	management.		The	work	in	this	task	has	been	extensively	covered	
in	Section	2.	
	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	22	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

3.3	USER-ADAPTIVE	DIALOGUE	STRATEGIES	
A	special	new	feature	of	the	ARIA-VALUSPA	dialogue	management	is	adaptation	to	the	
user.	Adaptation,	or	alignment,	in	natural	dialogues	appears	in	many	aspects	of	dialogue.	
This	task	involves	the	implementation	of	different	adaptive	strategies	that	are	relevant	
to	the	application.		
	
One	simple	 form	of	user	adaptation	 is	by	making	use	of	 the	 input	provided	by	 the	SSI	
framework.	The	SSI	can	detect	demographics	of	a	user	(e.g.	the	gender)	and	this	can	be	
used	by	the	agent	to	create	an	appropriate	of	responses,	for	example,	“Hello	Sir”	versus	
“Hello	 Madam”.	 	 Other,	 more	 advanced	 forms	 of	 adaptation	 we	 have	 focused	 on	 are	
adaptation	 in	 terms	of	 turn-taking	and	alignment	of	 the	agent’s	word	choice	 to	 that	of	
the	user.	

3.3.1.	TURN	TAKING	
Knowing	when	the	user	speaks	and	adapting	the	agent’s	behaviour	to	this	is	important	
for	 a	 smooth	 dialogue.	 To	 make	 this	 possible,	 we	 developed	 an	 Interaction	 State	
Manager,	which	is	located	in	the	Input	Processing	component	of	DM2.0	(see	Figure	1).	It	
collects	 information	 about	 a	 user	 being	 present	 and	 the	 current	 floor	 and	 turn-taking	
situation	 in	 the	 dialogue.	 This	 information	 is	 passed	 to	 the	 information	 state,	 from	
where	it	can	be	used	by	the	rest	of	the	DM.	The	Interaction	State	Manager	keeps	track	of	
the	agent’s	interaction	state:	if	it	is	idle,	trying	to	engage	or	disengage,	or	if	it	is	engaged	
with	a	user.	Additionally,	the	agent	uses	a	model	of	when	the	agent	is	talking,	listening,	
interrupting,	yielding	a	turn,	or	waiting,	shown	in	Figure	3.	This	supports	dynamic	turn-
taking	and	can	be	used	to	update	the	relevance	of	moves	as	well.		

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	23	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

Figure	3:	Interaction	State	Model,	based	on	the	work	of	Loch	(2011)	
	
	

3.3.2	VERBAL	ALIGNMENT	
In	addition	to	the	verbal	alignment	described	in	Section	2.3	in	D4.3,	we	have	developed	
rules	 for	adapting	agent	utterances	to	 those	of	 the	user.	This	makes	 it	possible	 for	 the	
agent	 to	 use	 referring	 expressions	 from	 the	 book	 that	 are	 preferred	 by	 the	 user.	 An	
example	is	talking	about	the	‘tiny	golden	key’	found	by	Alice	in	the	book.	We	could	refer	
to	it	in	the	agent	utterance	as	’key’,	‘golden	key’	or	‘tiny	key’.	If	the	user	uses	a	particular	
description,	the	agent	is	able	to	mirror	this.		To	achieve	the	alignment,	we	adopt	a	text-
to-text	 generation	 approach.	 This	 means	 we	 automatically	 modify	 the	 manually	
specified	 agent	 utterances,	 instead	 of	 generating	 aligned	 referring	 expressions	 from	
scratch,	as	done	in	the	work	on	alignment	of	referring	expressions	by	Buschmeier	et	al.	
(2009)	and	Gatt	et	al.	(2011).		
	
First,	to	determine	the	user’s	preferred	expression,	the	user	input	is	stemmed,	part-of-
speech	tagged	and	divided	into	chunks.	Stemming	and	chunking	were	chosen	over	their	
more	sophisticated	counterparts	(i.e.	lemmatization	and	full	syntactic	parsing)	to	make	
the	 whole	 process	 more	 resilient	 to	 potential	 inaccuracies	 of	 the	 ASR.	 The	 same	
processing	is	done	for	the	sentence	defined	in	the	FML,	i.e.	the	agent	answer,	but	in	this	
case	 we	 can	 also	 obtain	 a	 syntactic	 tree.	 For	 stemming,	 part-of-speech	 tagging	 and	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	24	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

parsing	 the	Stanford	CoreNLP	toolkit	 is	used,	while	 the	TextPro2	suite	divides	 the	 text	
into	chunks.	We	then	proceed	 to	adjust	every	noun	phrase	(NP)	 in	 the	agent	sentence	
whose	head	stem	matches	a	noun	in	the	user	sentence,	adding	and	removing	adjectives	
and	adverbs	so	 that	 the	phrase	of	 the	agent	matches	 the	chunk	of	 the	user.	Additional	
constraints	make	sure	 the	phrases	are	not	modified	when	 it	 is	 inappropriate	 to	do	so,	
e.g.	 in	existential	questions	(when	the	user	asks,	“are	there	any	cats	in	this	story?”,	the	
agent	should	not	answer	“yes,	there	are	any	cats”)	or	inside	quotations	(when	the	agent	
is	reporting	something	said	by	others).	
	
By	modifying	every	NP,	we	are	creating	a	sentence	that	-by	construction-	maximizes	the	
alignment	with	the	user.	However,	 the	process	also	 involves	a	number	of	 intermediate	
steps	 where	 not	 every	 noun	 phrase	 is	 aligned	 (overgeneration).	 This	 means	 that,	
depending	on	its	goal,	the	agent	can	also	choose	different	sentences,	e.g.	shorter	ones	to	
be	concise,	or	those	that	minimize	the	alignment	to	see	 if	 the	user	perceives	the	agent	
differently.	
	
We	are	currently	working	on	extending	this	process	with	synonyms	and	antonyms.	For	
example,	if	the	user	references	the	same	object	using	different	synonyms,	we	might	have	
the	agent	applying	 this	 strategy	as	well.	Finally	we	are	 in	 the	process	of	 setting	up	an	
experiment	 to	 see	 to	 what	 extent	 the	 difference	 between	 unaligned	 and	 aligned	
dialogues	is	noticeable	by	users,	and	if	this	contributes	positively	to	the	dialogue.	
	

3.4	REINFORCEMENT	LEARNING	BASED	ON	USER	FEEDBACK	
This	 task	 refers	 to	 training	 the	 system's	 adaptive	 dialogue	 strategies	 using	
reinforcement	learning.	It	was	originally	planned	for	the	months	31-36,	but	not	updated	
correctly	when	the	delivery	date	of	D3.3	was	moved	forward	from	month	36	to	month	
31.	This	task	has	thus	just	started	to	be	actively	pursued.	
	

3.5	DEALING	WITH	UNEXPECTED	SITUATIONS	
This	 task	 concerns	 enabling	 the	 ARIA	 agents	 to	 deal	 with	 unexpected	 situations	 that	
occur	during	an	interaction.	Two	types	of	unexpected	situations	that	we	have	addressed	
involve	 turn-taking.	We	 have	 designed	 a	model	 for	 dealing	with	 interruptions	 by	 the	
user:	 the	 agent	 can	 employ	 re-planning,	 holding	 and	 halt	 behaviour	 (see	 the	 main	
description	in	D4.3).	Additionally,	the	agent	can	interrupt	the	user.	This	is	achieved	by	
moves	 that	become	relevant	while	 the	user	 is	 speaking	and	by	using	 incremental	ASR	
output.	Using	moves	with	dynamic	relevance	updating	allows	us	to	interrupt	the	user	at	
an	opportune	moment.	For	example,	if	the	agent	wants	to	disagree	with	something	the	
user	 is	 saying,	 a	 move	 with	 rules	 describing	 exactly	 this	 situation	 will	 get	 a	 high	
																																																								
2	http://textpro.fbk.eu	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	25	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

relevance.	 The	 agent	 will	 start	 talking,	 even	 though	 it	 has	 not	 gotten	 the	 turn,	 thus	
interrupting	the	user.	
	
Additionally,	 we	 have	 defined	 an	 episode	 called	 ‘unexpected	 situations’.	 This	 episode	
contains	 exchanges	 and	 moves	 dealing	 specifically	 with	 unexpected	 situations	
(ironically	making	them	expected).	For	example,	when	we	observe	the	user	not	looking	
at	us	while	 the	agent	 is	 talking,	 the	agent	 can	 respond	 to	 this	 situation	with	a	 remark	
(e.g.	“Well,	I	think	it	is	polite	to	pay	attention…”,	see	Section	2.2).	
	

3.6	GENERATION	OF	DIALOGUES	FOR	BOOK	PERSONIFICATION	DEMONSTRATOR	
This	 task	 is	 devoted	 to	 the	 generation	 of	 dialogues	 for	 the	 book	 personification	
application.	The	aim	is	 to	create	a	set	of	dialogue	structures	 that	covers	 the	themes	 in	
the	 book	 and	 avoids	 open	 domain	 conversation.	 A	 first	 version	 of	 the	 book	
personification	demonstrator	was	described	 in	D3.2.	Since	 then,	 the	demonstrator	has	
been	extended	with	question-answer	(QA)	matching	functionality	comparable	to	that	of	
the	 VH	 Toolkit	 (Hartholt	 et	 al,	 2013).	 A	 question	 by	 the	 user	 is	mapped	 to	 the	most	
similar	question	found	in	a	database	with	question-answer	pairs,	and	the	corresponding	
answer	is	returned.		
Currently	the	demonstrator	uses	a	combination	of	QA	matching	functionality	and	DM	1.0	
templates	(to	be	replaced	with	DM	2.0	episodes	and	moves	as	described	in	Section	2.1).	
The	DM2.0	version	of	the	demonstrator	will	be	delivered	later	this	year.	

3.6.1	QUESTION	GENERATION.	
To	 easily	 expand	 the	 range	 of	 user	 questions	 that	 the	 Book	 Personification	 agent	 can	
answer	 through	 QA	matching,	 we	 have	 developed	 a	 question	 generation	 system	 that	
takes	 text	 as	 input	 and	 generates	 a	 large	 number	 of	 QA	 pairs	 from	 it.	 This	 form	 of	
question	generation	can	be	used	to	complement	or	replace	data	collection	with	human	
users,	 which	 we	 have	 used	 in	 the	 past	 to	 populate	 the	 QA	 database	 (see	 D3.2).	 For	
example,	 based	 on	 the	 input	 sentence	 (from	 a	 summary	 of	 Alice’s	 Adventures	 in	
Wonderland)	 “Her	 giant	 tears	 form	a	 pool	 at	 her	 feet”	 the	 following	questions	 can	be	
generated:	 “What	 happens	 at	 her	 feet?”	 Or:	 “What	 happens	 to	 her	 giant	 tears	 at	 her	
feet?”	The	answer	to	both	questions	is	“Her	giant	tears	form	a	pool”.		
Most	 question	 generation	 systems	 are	 used	 in	 educational	 applications,	 such	 as	 skill	
development	 assessment	 and	 knowledge	 assessment.	 Applications	 in	 conversational	
characters	are	rare.	One	of	the	exceptions	is	the	work	of	Yao	et	al.	(2012).	Their	question	
generation	 approach	 is	 based	 on	 syntactic	 transformation	 from	 declarative	 sentences	
into	questions.	As	source	texts	for	question	generation	they	used	Wikipedia.	In	contrast,	
our	 approach	 is	based	on	 semantic	 information	 (semantic	 role	 labels	 augmented	with	
dependency	structures)	and	we	use	narrative	texts	as	a	source.		

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	26	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

So	 far,	we	have	been	using	a	small	corpus	of	online	summaries	of	Alice’s	Adventures	 in	
Wonderland	 as	 source	 texts	 for	 question	 generation,	 but	 note	 that	 our	 approach	 is	
sufficiently	 general	 to	 take	 all	 kinds	 of	 texts	 as	 source	 material.	 We	 have	 used	
summaries	 instead	 of	 the	 book	 itself,	 to	 avoid	 potential	 problems	 with	 character	
dialogue	in	the	form	of	direct	speech	and	the	narrative	style	used	in	the	book.	
Our	Question	Generation	system	has	been	 inspired	by	 the	work	of	Mazidi	and	Nielsen	
(2014;	2015).	We	use	two	types	of	information	about	a	sentence	as	a	basis	for	question	
generation:	(1)	the	semantic	role	labels	assigned	to	the	sentence	and	(2)	the	dependency	
structure	 of	 the	 sentence.	 Semantic	 role	 labeling	 parses	 a	 sentence	 into	 a	 predicate-
argument	structure	with	consistent	argument	labels.	Following	Mazidi	and	Nielsen,	we	
use	the	tool	SENNA	(Collobert	et	al.,	2011)	to	produce	the	semantic	role	labels	for	each	
input	 sentence.	 SENNA	 produces	 a	 separate	 predicate-argument	 structure	 for	 each	
clause	 in	 the	 sentence.	 For	 determining	 the	 sentence’s	 dependency	 structure,	 we	
currently	 use	 PyStanfordDependencies,3	 a	 Python	 interface	 for	 parsing	 to	 Stanford	
Dependencies.	
The	 first	step	of	question	generation	 involves	matching	the	semantic	role	 labels	 in	 the	
input	 sentence	 to	 a	 set	 of	 previously	 established	 patterns.	 For	 instance,	 our	 example	
sentence	above	matches	the	pattern	A0-V-A1-LOC,	where	A0	corresponds	to	 the	agent	
role,	A1	the	patiens	role,	and	LOC	is	a	locative	modifier:	Her	giant	tears	(A0)	form	(V)	a	
pool	 (A1)	 at	 her	 feet	 (LOC).	 In	 the	 next	 step,	 based	 on	 the	 detected	 patterns	 (where	
necessary	 combined	 with	 dependency	 information),	 question	 and	 answer	 pairs	 are	
formed	 from	 each	 clause.	 Currently,	 we	 distinguish	 around	 20	 different	 patterns	 for	
question	generation;	 these	are	based	on	the	semantic	role	combinations	 that	occurred	
most	 frequently	 in	 our	 corpus	 of	 summaries.	 These	 patterns	 have	 been	 refined	 and	
improved	after	tests	with	new	(previously	unseen)	input	data.	In	general,	a	QA	pair	can	
be	created	 if	a	sentence	has	a	predicate	 (V),	 two	or	more	verb	arguments	and	zero	or	
more	 modifiers:	 temporal	 (TMP),	 locative	 (LOC),	 adverbial	 (ADV)	 or	 Manner	 (MNR).	
Sentences	with	 fewer	 than	 two	 basic	 arguments	 are	 currently	 excluded,	 because	 they	
tend	to	be	relatively	uninformative,	and	thus	not	a	good	basis	for	questions	and	answers.	
On	 average,	 the	 question	 generation	 system	 produces	 4	 QA	 pairs	 per	 sentence	 in	 the	
input	document.	

3.6.2	FOLLOW-UP	QUESTION	STRATEGY	
An	important	challenge	with	using	question	generation	for	conversational	agents	is	that	
there	 is	 a	 high	 probability	 of	 mismatches	 between	 the	 generated	 questions	 and	 the	
actual	questions	that	the	users	ask	(Yao	et	al.,	2012).	Moreover,	an	inherent	limitation	of	
the	 question	 generation	 approach	 is	 that	 it	 can	 only	 generate	 questions	 to	which	 the	
answers	 can	 be	 found	 in	 the	 source	 text	 (the	 book	 or	 a	 summary	 of	 the	 book).	 To	
address	these	challenges,	we	developed	an	innovative	dialogue	strategy	that	nudges	the	

																																																								
3	https://github.com/dmcc/PyStanfordDependencies	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	27	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

users	 towards	asking	 follow-up	questions	 that	 can	be	matched	 to	 the	questions	 in	 the	
QA	database.	
	To	increase	the	likelihood	that	the	user	of	the	ARIA	system	will	actually	ask	this	type	of	
questions,	we	designed	 and	 implemented	 the	 following	 strategy.	The	 system	does	not	
just	present	an	answer,	based	on	a	specific	sentence	in	the	book,	but	follows	it	up	with	a	
hint	about	 the	next	 sentence,	 to	encourage	 the	user	 to	ask	a	 follow-up	question	about	
this.	This	hint	takes	the	form	of	the	clue	"then	something	happens"	plus	a	phrase	from	
the	 next	 sentence	 (if	 applicable).	 The	 following	 example	 is	 an	 excerpt	 from	 an	 actual	
dialogue	that	took	place	during	our	user	test,	which	is	described	below:	

Agent:	She	follows	the	rabbit	down	the	hole	.	Then	something	happens	when	She	
falls	for	a	long	time	...	
User:	What	happens	after	she	falls	for	a	long	time?	
Agent:	She	falls	for	a	long	time	and	finds	herself	in	a	long	hallway	full	of	doors	

When	 the	 user	 takes	 up	 the	 hint	 for	 the	 follow-up	 question	 and	 repeats	 it	 in	 full,	 the	
user's	 question	 can	 be	 easily	 matched	 with	 the	 corresponding	 question	 in	 the	 QA	
database,	 as	 shown	 in	 the	 example.	 However,	 if	 the	 user	 takes	 the	 hint	 but	 asks	 an	
elliptic	question	("What	happens?")	 this	question	matches	many	different	questions	 in	
the	database.	To	prevent	incorrect	matches,	the	system	expands	elliptic	questions	based	
on	the	hint	it	has	just	given,	converting	them	to	full	questions	that	have	a	direct	match	in	
the	QA	database.	The	following	dialogue	excerpt	from	our	user	test	illustrates	this.	Here,	
the	 user	 question	 “What	 happen	 there”	 is	 converted	 to	 “What	 happens	 when	 the	
caterpillar	and	Alice	get	into	an	argument”	and	matched	correctly	to	the	corresponding	
answer.		

Agent:	She	meets	a	caterpillar	sitting	on	a	mushroom	and	smoking	a	hookah	(i.e.	,	
a	water	pipe)	.	Then	something	happens	when	The	caterpillar	and	Alice	get	into	
an	argument	...	
User:	What	happen	there?	
Agent:	The	caterpillar	and	Alice	get	 into	an	argument	but	before	the	Caterpillar	
crawls	away	 in	disgust	 ,	he	 tells	Alice	 that	different	parts	of	 the	mushroom	will	
make	her	grow	and	shrink	.	Then	something	happens		when	Alice	tastes	a	part	of	
the	mushroom	...	

3.6.3	USER	TEST	AND	NEXT	STEPS	
The	 follow-up	 question	 strategy	 was	 implemented	 and	 tested	 in	 a	 small-scale	 user	
experiment	in	which	four	users	interacted	with	a	standalone	version	of	the	QA	matcher,	
with	typed	text	input	and	output.	The	QA	database	used	for	the	test	consisted	of	691	QA	
pairs,	 generated	 from	 three	 summaries	 of	 Alice's	 Adventures	 in	 Wonderland.	 The	
dialogues	 with	 the	 test	 users	 have	 not	 yet	 been	 analysed	 in	 detail,	 but	 the	 first	
impression	 is	 that	 the	 follow-up	 question	 strategy	works	well	 to	 give	 the	 users	 some	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	28	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

idea	 of	what	 to	 ask,	 and	 to	 suggest	 questions	 to	 them	 that	 can	 actually	 be	 answered.	
However,	users	also	frequently	asked	questions	that	had	no	match	in	the	database	(e.g.,	
"Who	 is	 the	mad	 hatter"	 or	 "What	 is	 the	 King's	 name?").	 To	make	 it	 possible	 for	 the	
system	to	answer	such	questions	as	well,	we	need	to	use	additional	sources	for	question	
generation,	 e.g.,	 Wikipedia	 entries	 about	 the	 book	 and	 its	 characters.	 The	 question	
generation	approach	could	be	easily	expanded	to	include	such	sources.	In	addition,	the	
question	generation	system	needs	to	be	extended	to	generate	multiple	variations	of	the	
same	question,	to	ensure	that	a	correct	match	can	be	found	even	when	the	user	deviates	
from	the	phrasing	that	was	used	in	the	source	text	and	in	the	system’s	hints.	
The	 next	 step	 will	 be	 to	 expand	 the	 QA	 database	 used	 in	 the	 Book	 Personification	
demonstrator	with	the	already	generated	QA	pairs	from	the	book	summaries4,	and	with	
additional	QA	pairs	to	be	generated	from	other	sources	as	suggested	above.	The	follow-
up	question	strategy	also	needs	to	be	added	to	the	Book	Personification	demonstrator.	A	
link	to	the	software	can	be	found	at	the	bottom	of	this	document.	

3.7	GENERATION	OF	DIALOGUES	FOR	INDUSTRY	ASSOCIATE	DEMONSTRATOR	
This	task	 is	devoted	to	the	Industry	Associate	application.	 It	encompasses	defining	the	
exact	mission	of	the	Virtual	Assistant,	creating	a	dialogue	scenario	to	achieve	this	goal,	
and	building	adaptive	and	task-oriented	dialogues	in	multiple	languages.	
	
Due	 to	 legal	 issues	 between	 the	 industry	 partner	 and	 the	 project,	 there	 has	 not	 been	
much	progress	on	this	task.	These	 issues	have	been	sorted	out	only	very	recently,	and	
we	are	currently	awaiting	the	industry	partner’s	input	on	the	desired	dialogues	so	that	
we	can	start	implementing	these	in	the	DM2.0.	
	
	 	

																																																								
4	Before	they	can	be	used	in	the	Book	Personification	demonstrator,	the	generated	questions	and	answers	still	need	to	
be	converted	from	third	to	first	and	second	person	respectively,	when	referring	to	Alice.	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	29	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

4.	CONCLUSIONS	AND	PLANS	FOR	NEXT	PERIOD	
	
4.1	CONCLUSIONS	
We	have	 developed	 a	 new	 dialogue	 engine,	 Flipper	 2.0,	 and	 designed	 a	 new	 dialogue	
manager	 (DM2.0)	 that	we	 are	 developing	 around	 this	 system.	 This	 dialogue	manager	
provides	 a	 dialogue	 structure	 based	 on	 the	DIT++	 standard,	 that	makes	 it	 possible	 to	
specify	 domain-specific	 as	 well	 as	 domain-independent	 dialogue	 moves	 that	 cover	
multiple	conversational	dimensions.	The	full	DM	2.0	is	not	yet	available,	but	is	planned	
to	be	made	available	within	the	next	period,	including	dialogues	for	both	the	book-ARIA	
and	industry-ARIA.	We	will	provide	an	authoring	tool	for	developing	dialogues	for	other	
domains	as	well.		
	
In	addition	to	our	work	on	the	dialogue	manager,	we	have	developed	new	techniques	for	
the	 agent’s	 verbal	 alignment	 to	 the	 user	 and	 for	 populating	 a	 QA	 database	 for	
information	retrieval	with	automatically	generated	question-answer	pairs.	
	
4.2	PLANS	FOR	NEXT	PERIOD	
The	most	crucial	task	in	the	final	months	in	this	project	will	be	finishing	the	DM	2.0	(i.e.	
implementing	 the	moves,	 linking	 the	 behaviours,	 finishing	 the	 authoring	 tool)	 and	 its	
documentation.	 This	 will	 allow	 others	 to	 use	 the	 software	 to	 create	 their	 own	 ARIA	
agents.	We	will	 finish	 the	 implementation	 and	definition	of	 dialogue	 scenarios	 for	 the	
book-ARIA	and	the	industry	ARIA.	These	will	be	good	showcases	of	the	system	and	its	
capabilities	and	they	can	help	others	to	understand	how	to	create	their	own	ARIAs.		
	
The	open-source	nature	of	this	project	means	that	interested	parties	will	be	allowed	to	
create	an	ARIA	on	their	own	after	the	project	with	our	software.	The	delivered	software	
comes	with	sufficient	documentation	to	allow	 industry	partners	(and	external	parties)	
to	create	a	compelling	conversational	agent.	
	
Authoring	 of	 dialogues	 will	 be	 easier	 with	 the	 ARIA	 DM2.0	 than	 it	 is	 with	 other	 DM	
systems,	because	where	possible	an	author	only	needs	to	describe	a	situation	and	what	
the	agent	should	do	 in	 that	context.	To	make	authoring	even	simpler,	we	have	started	
with	the	development	of		a	visual	software	tool	for	authoring	of	moves.		
On	the	part	of	reinforcement	learning	we	will	use	the	relevance	of	a	move	as	a	basis	for	
learning.	We	will	set	up	a	small	experiment	 in	which	we	show	agent-human	dialogues	
(or	 dialogue	 fragments)	 to	 observers,	 who	 have	 to	 rate	 the	 quality	 of	 the	 agent’s	
responses.	These	scores	will	be	used	to	learn	a	better	relevance	update	policy.	
Already	 clear	 is	 that	 the	 system	 will	 continue	 to	 be	 developed	 after	 the	 project	 has	
ended.	We	will	add	a	topic	planner,	which	will	calculate	possible	topic	 transitions	that	
the	agent	can	use	for	talking	about	topics	the	agent	wants	to	talk	about	or	topics	the	user	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	30	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

finds	interesting.	Currently,	topic	recognition	in	dialogues	often	works	on	the	utterance	
level	(select	the	noun	phrase	in	the	subject	or	object	position),	but	it	could	be	extended	
to	determine	the	topic	of	a	dialogue	segment	(Rats,	1996;	Mei,	Bansal	and	Walter,	2017).	
To	learn	how	an	agent	should	perform	segment-level	topic	recognition,	we	will	set	up	an	
experiment	 in	which	observers	 indicate	topics	 in	the	dialogues	of	the	corpus.	With	the	
annotation	 of	 the	 corpus	 on	 topic	 transitions,	 we	 will	 investigate	 cues	 for	 topic	
transitions	and	create	a	topic	management	module	based	on	our	analysis.	
	
Finally,	 we	 want	 to	 have	 users	 talking	 to	 a	 version	 of	 Alice	 that	 contains	 topic	
management	 and	 can	 recognize	 higher-level	 topics	 and	 using	 human-like	 topic	
transition	 strategies.	 To	 evaluate	 these	 dialogues,	 observers	 will	 rate	 the	 recorded	
conversations	using	metrics	such	as	human-likeness	and	competence	(Glas,	2015).	

5.	OUTPUTS	
The	 outputs	 with	 pertinence	 to	 this	 deliverable	 that	 have	 been	 published	 (or	 are	 in	
press)	or	have	been	otherwise	disseminated	so	far	in	this	project.		
	
Publications:	
Bowden,	 K.,	 Nilsson,	 T.,	 Spencer,	 C.,	 Cengiz,	 K.,	 Ghitulescu,	 A.	 and	 van	Waterschoot,	 J.	
(2017)	 I	 Probe,	 Therefore	 I	 Am:	 Designing	 a	 Virtual	 Journalist	 with	 Human	 Emotions.	
Proceedings	of	the	12th	Summer	Workshop	on	Multimodal	Interfaces	(eNTERFACE	’16),	
pp.	47-53,	July	18	–	August	12,	2016	Enschede,	The	Netherlands.		
	
Cafaro,	 A.,	 Bruijnes,	 M.,	 van	 Waterschoot,	 J.,	 Pelachaud,	 C.,	 Theune,	 M.,	 &	 Heylen,	 D.	
(2017).	Selecting	 and	Expressing	 Communicative	 Functions	 in	 a	 SAIBA-Compliant	Agent	
Framework.	In	proceedings	of	Intelligent	Virtual	Agents	2017.	
	
Lina	Fasya,	E.	(2017).	Automatic	question	generation	for	virtual	humans.	Master	thesis,	
University	of	Twente,	August	2017.	
	
Kolkmeier,	J.,	Bruijnes,	M.	and	Reidsma,	D.	(2017)	A	demonstration	of	the	ASAP	Realizer–
Unity3D	Bridge	 for	Virtual	and	Mixed	Reality	Applications.	 In	proceedings	of	 Intelligent	
Virtual	Agents	2017.	
	
van	Waterschoot,	J.	and	Theune,	M.	(2017)	Topic-Based	Personalization	of	Dialogues	with	
a	 Virtual	 Coach.	 In	 proceedings	 of	 the	 workshop	 on	 Persuasive	 Embodied	 Agents	 for	
Behavior	Change,	at	Intelligent	Virtual	Agents	2017.	
	
Posters:	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	31	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

van	Waterschoot,	J.	(2017)	Topic	recognition	and	management	in	conversational	agents.	
Poster	 presented	 at	 the	 Young	 Researchers’	 Roundtable	 on	 Spoken	 Dialog	 Systems,	
August	13-14,	Saarbrücken,	Germany.	
	
Workshops:	
Agents	in	Practice	-	Designing	for	Dialogues.	SIKS	workshop/tutorial.	2017,	March	
	
Workshop	 on	 Conversational	 Interruptions	 in	 Human-Agent	 Interactions.	 At	 Intelligent	
Virtual	Agents,	2017.		
	
Invited	talks:	
Heylen,	 D.K.J.	 Invited	 Talk	 at	 Workshop	 on	 Conversational	 Interruptions	 in	 Human-
Agent	Interactions.	At	Intelligent	Virtual	Agents,	2017.		
	
Heylen,	 D.K.J.	 A	 Sentimental	 Journal.	 Emotions	 in	 Daily	 Life.	 Invited	 talk	 at	 the	 3rd	
International	 Workshop	 on	 Emotion	 and	 Sentiment	 in	 Social	 and	 Expressive	 Media	
(ESSEM	 2017):	 User	 Engagement	 and	 Interaction.	 At	 the	 International	 Conference	 on	
Affective	Computing	and	Intelligent	Interaction,	2017.	
	
Software:	
Flipper2.0:	https://github.com/hmi-utwente/Flipper-2.0		
	
Alice-QuestionAnswer	Generation:	https://github.com/evania/alice-qg		
	
Full	Aria-Valuspa	Platform	(AVP):	https://github.com/ARIA-VALUSPA/AVP	

REFERENCES	
H.	Bunt,	J.	Alexandersson,	J.	W.	Choe,	A.	C.	Fang,	A.	C.,	K.	Hasida,	V.	Petukhova	...	and	D.R.	
Traum.	 ISO	 24617-2:	 A	 semantically-based	 standard	 for	 dialogue	 annotation.	 In	LREC	
pp.	430-437,	2012.	
H.	 Buschmeier,	 K.,	 Bergmann,	 and	 S.	 Kopp.	 An	 alignment-capable	 microplanner	 for	
Natural	Language	Generation.	 In	Proc.	12th	European	Workshop	on	Natural	Language	
Generation	(ENLG’09)	pp.	82–89,	2009.	
R.	 Collobert,	 J.	 Weston,	 L.	 Bottou,	 M.	 Karlen,	 K.	 Kavukcuoglu,	 and	 P.	 Kuksa.	 Natural	
language	processing	(almost)	 from	scratch.	 Journal	of	Machine	Learning	Research,	vol.	
12,	pp.	2493–2537,	2011.	
A.	 Gatt,	 M.	 Goudbeek	 and	 E.	 Krahmer.	 Attribute	 preference	 and	 priming	 in	 reference	
production:	 Experimental	 evidence	 and	 computational	 modeling.	 Proceedings	 of	 the	
Annual	Meeting	of	the	Cognitive	Science	Society,	vol.	33,	pp.	2627-2632.	2011.	

	 	 	 	 ARIA Valuspa	 	

European	Union’s	Horizon	2020	research	and	innovation	programme	645378,	ARIA-VALUSPA	

September,	2017	

-	32	-	
	

Deliverable	(D3.3).	Release	of	the	multilingual,	adaptive	dialogue	toolbox	
	 	 	 	 	 	

	

N.	Glas.	Engagement	driven	 topic	 selection	 for	 an	 information-giving	agent.	Workshop	
on	the	Semantics	and	Pragmatics	of	Dialogue,	SemDial	2015,	Gothenburg,	Sweden.	
A.	Hartholt,	D.	Traum,	S.	C.	Marsella,	A.	Shapiro,	G.	Stratou,	A.	Leuski,	L.-P.	Morency	and	J.	
Gratch,	 All	 Together	 Now:	 Introducing	 the	 Virtual	 Human	 Toolkit.	 In	 International	
Conference	on	Intelligent	Virtual	Humans,	Edinburgh,	2013.	
A.	Leuski	and	D.	Traum.	NPCEditor:	Creating	Virtual	Human	Dialogue	Using	Information	
Retrieval	Techniques,	In	AI	Magazine,	volume	32,	2011.	
F.	Loch.	Computational	Models	 for	Turn	Management	using	Statecharts.	Master	Thesis,	
University	of	Twente,	2011	
M.	 ter	 Maat	 and	 D.K.J.	 Heylen.	 Flipper:	 An	 Information	 State	 Component	 for	 Spoken	
Dialogue	 Systems.	 In:	 Vilhjálmsson	 H.H.,	 Kopp	 S.,	 Marsella	 S.,	 Thórisson	 K.R.	 (eds)	
Intelligent	 Virtual	 Agents.	 IVA	 2011.	 Lecture	 Notes	 in	 Computer	 Science,	 vol	 6895.	
Springer,	Berlin,	Heidelberg,	2011.	
K.	Mazidi	and	R.	D.	Nielsen.	Linguistic	considerations	in	automatic	question	generation.	
In	the	Proceedings	of	ACL	2014,	pp.	321–326.	
K.	Mazidi	 and	 R.	 D.	 Nielsen.	 Leveraging	multiple	 views	 of	 text	 for	 automatic	 question	
generation.	 In:	Proceedings	of	 the	 International	Conference	on	Artificial	 Intelligence	 in	
Education	(2015),	pp.	257–266.	
H.	Mei,	M.	Bansal	and	M.	R.	Walter.	Coherent	Dialogue	with	Attention-Based	Language	
Models.	In:	AAAI.	2017.	p.	3252-3258.	
F.	Morbini	et	al.	"FLoReS:	a	forward	looking,	reward	seeking,	dialogue	manager."	Natural	
interaction	with	 robots,	 knowbots	 and	 smartphones.	 Springer,	 New	 York,	 NY,	 2014.	 pp	
313-325.	
C.	 Rich	 and	 C.	 Sidner.	 Using	 collaborative	 discourse	 theory	 to	 partially	 automate	
dialogue	 tree	 authoring.	 In	 Intelligent	 Virtual	 Agents	 (pp.	 327-340).	 Springer	
Berlin/Heidelberg,	2012	
X.	Yao,	E.	Tosch,	G.	Chen,	E.	Nouri,	R.	Artstein,	A.	Leuski,	K.	Sagae,	and	D.	Traum.	Creating	
conversational	characters	using	question	generation	tools.	Dialogue	&	Discourse,	vol.	3,	
no.	2,	pp.	125–146,	2012.	
	
	

