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ABSTRACT

This paper explores the use of context on regression-based methods for facial landmarking. Regression
based methods have revolutionised facial landmarking solutions. In particular those that implicitly
infer the whole shape of a structured object have quickly become the state-of-the-art. The most notable
exemplar is the Supervised Descent Method (SDM). Its main characteristics are the use of the cascaded
regression approach, the use of the full appearance as the inference input, and the aforementioned aim
to directly predict the full shape. In this article we argue that the key aspects responsible for the
success of SDM are the use of cascaded regression and the avoidance of the constrained optimisation
problem that characterised most of the previous approaches.We show that, surprisingly, it is possible
to achieve comparable or superior performance using only landmark-specific predictors, which are
linearly combined. We reason that augmenting the input with too much context (of which using the
full appearance is the extreme case) can be harmful. In fact, we experimentally found that there is a
relation between the data variance and the benefits of adding context to the input. We finally devise a
simple greedy procedure that makes use of this fact to obtain superior performance to the SDM, while
maintaining the simplicity of the algorithm. We show extensive results both for intermediate stages
devised to prove the main aspects of the argumentative line, and to validate the overall performance of
two models constructed based on these considerations.

c© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Structured object detection is an active research area in Com-
puter Vision, where the aim is to describe the shape of an object
by locating its parts. Facial landmark detection is a prime ex-
ample of this, and it is a key step in many applications such
as face recognition or facial expression recognition, where the
alignment step based on the location of the parts is crucial to
achieve a good performance.

Existing facial landmark detection approaches are commonly
divided into part-based and holistic approaches. Holistic ap-
proaches are mostly restricted to the Active Appearance Models
family (Cootes and Taylor (2001), Matthews and Baker (2004)).
They represent the full face appearance, and are typically gen-
erative. Facial landmarking results in this case as a by-product
of the dense reconstruction of the face appearance. Instead,
part-based models are characterised by representing the face as
a constellation of patches, each centred around the facial land-
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marks. They are typically discriminative (Saragih et al., 2011),
although it is also possible to use part-based generative models
(Tzimiropoulos and Pantic, 2014). While generative methods
are capable of attaining very precise results when the search
is initialised close to the solution (Tzimiropoulos and Pantic,
2013), discriminative methods provide better robustness. In this
article we focus on part-based discriminative models, as they
are the most widely used.

Many of the existing works on part-based facial landmark-
ing can be cast in the Constrained Local Models (CLM) frame-
work1 introduced by Saragih et al. (2011). The CLM frame-
work devises landmark detection as the iterative alternation be-
tween two steps, response map construction and response max-
imisation. Response maps encode the likelihood of any given
image location of being the true landmark location, and a dif-
ferent response map is constructed for each landmark. Many

1The term Constrained Local Model was previously introduced by Cristi-
nacce and Cootes (2006) prior to the work by Saragih et al. (2011). Further-
more, it has become somewhat common to refer to the specific approach pro-
posed in Saragih et al. (2011) as the CLM, while their method was introduced
only as a particular instance of the CLM framework. In this article we refer to
CLM as the general framework rather than to any specific methodology.
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works used classifiers to create these landmarks (e.g. Saragih
et al. (2011); Belhumeur et al. (2011); Asthana et al. (2013,
2015)). A probabilistic classifier (e.g., a logistic regressor) can
be trained to distinguish the true landmark location from sur-
rounding locations. At test time, the classifier can be evaluated
over a region of interest in a sliding window manner. The re-
sponse map is then constructed using the predicted likelihoods.
The response maximisation step consists of finding the valid
shape maximising the combined per-landmark responses. Thus,
this step is a maximisation constrained by the shape model.

The shape fitting step is very challenging, and it contains
multiple local minima. Thus, many authors have focused their
efforts on improving this step. For example, Saragih et al.
(2011) attained real-time reliable fitting by using a Mean Shift-
constrained optimisation. However, the Mean Shift optimisa-
tion is prone to converge at local maxima, especially for the
flexible shape parameters, responsible for expressions. To over-
come this, Belhumeur et al. (2011) proposed a variation of
RANSAC, so that a very large number of solutions were gen-
erated using training set exemplars. The highest-scoring exem-
plars were linearly combined into the final solution. Asthana
et al. (2013) instead used discriminatively trained regressors to
find adequate increments to the shape parameters, and Asthana
et al. (2015) proceeded by training a generative model of the
response maps and then using it to perform the maximisation.

Recent years have seen the appearance of works employing
regressors instead of classifiers to exploit local appearance (Val-
star et al., 2010). It was soon shown that the regressors re-
sulted in improved response maps and hence better global per-
formance (e.g. Cootes et al. (2012); Martinez et al. (2013)).
However, a constrained optimisation problem was still neces-
sary in order to enforce shape consistency, consequently hin-
dering performance. Further performance improvement was at-
tained by considering regressors trained to directly infer the full
shape increments necessary to move from the current shape es-
timate to the ground truth. That is to say, instead of using the ap-
pearance of a single landmark to predict only the location of this
landmark, the full appearance is used to predict the entire shape,
eliminating the need for a subsequent step enforcing shape con-
sistency. This was pioneered by Cao et al. (2014), who also
proposed the use of cascaded regression (Dollár et al., 2010)
to this end. However, it was the Supervised Descent Method
(SDM) (Xiong and De la Torre, 2013) that became the de-facto
state of the art. While they maintained the main concepts of
Cao et al. (2014), they simplified the method by using Least
Squares for regression, and concatenated per-landmark HOG
features as their feature representation. This resulted in a very
simple algorithm capable of attaining the best performance to
date (only 4 matrix multiplications are involved, not counting
feature extraction!).

Is thus an important line of investigation to analyse what the
key advantages are of the SDM with respect to other methods.
Several factors characterise the algorithm: the cascaded regres-
sion, the implicit use of context (i.e., the concatenation of all
the local descriptors into a single feature vector), and the di-
rect prediction of the shape. Each can be argued to have merit.
The cascaded regression allows for combined robustness and

precision, the use of context provides an input with augmented
descriptive power, and the direct shape increment prediction re-
moves the need for subsequent complex optimisation steps.

We argue that using only two of these components, to wit
the cascaded regression and the direct estimation of the shape,
is sufficient to produce similar or even better results to those
of the SDM. That is to say, if these two aspects are respected,
similar performance can be attained with and without context.
We further investigate to which extent the use of context within
the input features is necessary, exploring intermediate solutions
between landmark-independent predictions and the SDM ap-
proach. In order to eliminate context from the regression mod-
els, we resort to the sparsification of the feature covariance ma-
trix. We show experiments highlighting the relation between
the amount of context used (i.e., the sparseness of the feature
covariance matrix), and the variability of the data in terms of
factors such as the head pose, image quality, facial expressions
or identity. Finally, we use this relation to build a variant of the
SDM algorithm with decreasingly sparse matrices at each iter-
ation. This algorithm can be very easily implemented given an
SDM implementation, has less computational complexity, and
achieves superior performance in practise. We use the LFPW,
Helen, AFW and IBUG datasets (see Sec. 6 for details) to val-
idate the analysis and to show practical performance of the so-
lution derived from it.

A previous version of this manuscript appeared in Sánchez-
Lozano et al. (2013). The work presented in this article differs
from it in that we provide a more complete interpretation and
mathematical derivation to justify the matrix sparsification, pro-
vide a link between the benefits of sparsification and data vari-
ance that was missing in the previous version, and we link the
success of direct regression-based methods with the avoidance
of constrained optimisation.

The contributions of this work can thus be summarised as:

• We analyse which are the key methodological aspects be-
hind the performance success of the SDM.

• We show that, surprisingly, we achieve superior perfor-
mance to the standard SDM when encoding no context
within the input features.

• We show that there is an inverse correlation between the
benefits of using context and the variance of the input data.

• Based on these observations, we devise a simple yet effec-
tive extension of the SDM, where each regressor uses an
optimal amount of context within the input features. The
resulting method is shown to outperform SDM

2. Cascaded Linear Regression

Let I be a face image, for which we want to estimate the ground
truth shape sg, consisting of n facial landmarks (thus being a
2n-dimensional vector). Let s be an estimation of the location
of these points, then φ(I, s) ∈ Rp×1 , with p the dimension of
the feature space, represents the features extracted around the
positions defined by s within image I. The feature vector is
constructed by extracting a HOG descriptor at a small patch
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centred around each landmark, and then concatenating features
of all patches into a single feature vector. The regression tar-
get is defined as y = sg − s. That is to say, y is the increment
necessary to move from the current estimate s to the ground
truth shape sg. It is then possible to define a linear regressor
{R,b} ∈ {R2n×p,R2n×1} tasked with translating image features
into shape increments. Specifically, the increment y is esti-
mated as Rφ(I, s) + b and the updated shape estimate is com-
puted as y + s. This linear regressor can be expressed in a more
compact form by defining φ̃(I, s) as the result of adding a one
to the end of φ(I, s). Then, R̃ is defined as a R2n×p+1 matrix, so
that:

Rφ(I, s) + b = R̃φ̃(I, s) (1)

The data variance is in practise too large to attain an accurate
prediction of the true shape using only a single prediction made
by one single regressor. In the SDM, this limitation is over-
come through the use of the cascaded regression. The idea is to
sequentially apply a set of regressors rather than using a single
one. At test time, an initial shape estimate s0 is computed using
the face detection bounding box. Then, the cascaded regression
produces a sequence of estimates as sk = sk−1 + R̃kφ̃(I, sk−1). If
the cascade has N iterations, then sN is the estimate of s∗.

The training of the cascade starts with a data augmentation
strategy (Dollár et al., 2010), which proceeds by generating
m different initial shapes for each of the nim training images.
These shapes can for example be generated by aligning a refer-
ence shape (e.g. the mean shape) to the ground truth by means
of a translation and scaling transformation. Then, the aligned
reference shape is perturbed in terms of translation and scaling,
sampling the perturbation uniformly within a range. This re-
sults in a set of initial shapes s0

i, j. The Least Squares regressor
k is then computed as:

R̃k = arg min
R

nim∑
i

m∑
j

‖sg
i − sk−1

i, j − R φ̃(Ii, sk−1
i j )‖22 (2)

and the training shapes for the next iteration are defined by ap-
plying the trained regressor to each of the training shapes as:

sk
i, j = sk−1

i, j + R̃φ̃(Ii, sk−1
i, j ) (3)

The minimisation in Eq. 2 is simply a least squares equation,
and it has a closed form solution. We first set the notation Xk

as the matrix that results from storing the vectors φ̃(Ii, sk−1
i, j ) as

its columns. Furthermore, we consider that all the features are
normalised to have 0 mean and standard deviation 1 across all
the training set, except for the feature corresponding to the bias
term. Similarly, Yk is defined as the matrix containing sg

i − sk−1
i, j

on its columns. Then the optimal regressor is defined as:

R̃k = YkXkT
(
XkXkT

)−1
(4)

It is interesting to note that, despite the joint form of the predic-
tion function, each of the outputs is estimated independently of
one another. That is to say, if we were to define 2n regressors
taking the same input as in Eq. 4, but where the target would

be 1-dimensional, the output would be the same. Thus, SDM
does not enforce shape consistency. Instead, the output shape is
(approximately) valid due to the use of the same input for each
of the 2n regressors

3. Context vs. no context

We observe that the SDM formulation is actually equivalent to
training a different regressor to predict each of the 2n dimen-
sions of the output. The use of the full appearance as the input
can be interpreted as the use of context. That is to say, the
prediction for a specific landmark is not computed only with
landmark-specific information, but rather with information re-
garding all landmarks. In this section we argue that the key as-
pect is that the same input φ(I, s) is used for each of the n output
dimension-specific regressors, rather than that φ(I, s) actually
encodes context. To this end, we will define an algorithm that
uses no context (prediction is based only on landmark-specific
information). We will show that this algorithm attains equal or
even superior performance compared to the SDM despite not
using any context at all.

Let us note C = XXT as the covariance feature matrix in-
volved in Eq. 4 (we are ignoring the index of the cascade iter-
ation for simplicity of notation). Xi is defined too as a block
of X containing the features associated with landmark i. We
further note Ci, j as the sub-matrix of C between the features
resulting from landmark i and those resulting from landmark
j. Let us devise an algorithm parallel to the SDM, but where
no context is used to perform prediction. More specifically,
let us obtain a prediction of the full shape in exactly the same
way, but now only using the appearance of a single landmark
as the input. This same landmark-specific prediction can be ob-
tained for each landmark, resulting in n predictions. Finally,
we combine all of the n predictions into a single one by com-
puting a weighted mean of the landmark-specific predictions.
This can be specified in mathematical terms by first defining
the per-landmark predictions of the full shape as:

ŷ∗,l = R̃lxl
∗ = YXlT

(
Cl,l

)−1
xl
∗ (5)

where l = {1, . . . , n} indexes the landmarks, we use the asterisk
for variables defined for the test image, and ŷ∗,l is the prediction
of the full shape generated using the appearance of landmark l.
Then the test shape estimate for the next stage of the cascade is
defined as follows:

s∗ + ŷ∗ = s∗ +

n∑
l=1

wlŷ∗,l (6)

This process is very similar to previous landmarking meth-
ods (e.g., Valstar et al. (2010)). However, it does not alternate
between per-landmark predictions and shape-level constrains,
instead performing a prediction over the full face shape at once,
through the combination of multiple predictions. Now let us
represent this into a more compact equation as:

ŷ∗ =

n∑
l=1

wlYXlT
(
Cl,l

)−1
xl
∗ = YXT C̃−1x∗ (7)
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Fig. 1: Performance (in terms of the IOD-normalised error - see Sec. 6 for de-
tails) for the SDM (red) and the averaging of landmark-independent predictions
(blue) on the test partition of the LFPW dataset. The y value of the graph indi-
cates the percentage of test images with an error equal or lower to the x value.

where:

C̃ =


w−1

1 C1,1 0 · · · 0
0 w−1

2 C2,2 0 · · ·

...
. . .

...
0 · · · 0 w−1

n Cn,n

 , (8)

It is interesting to now note that the prediction for the stan-
dard SDM regression takes a very similar form to Eq. 7. The
only difference is that C is now substituted by a much sparser
matrix C̃, where all relations between features associated to dif-
ferent landmarks are set to 0.

In here we interpret this relation as follows: the SDM makes
full use of the context in the data representation, and this is re-
flected in the dense feature covariance matrix associated to its
formulation. Instead, the use of landmark-independent regres-
sors, i.e., regressors that use only appearance information from
one landmark to predict, is equivalent to the use of a block-
diagonal (i.e. very sparse) matrix. However, there are inter-
mediate levels of sparseness of C, each one corresponding to a
different level of context. In the following we define the gen-
eral case, of which the SDM and the landmark-independent ap-
proaches are special cases.

We performed an experiment to see the impact of the use
of context on the quality of the prediction. The performance
of both algorithms was measured on the LFPW test partition.
The prediction error was computed using the Inter-Ocular Dis-
tance (IOD)- normalised measure (see Sec. 6 for details). The
resulting cumulative error distributions for both the SDM and
the landmark-independent methods are shown in Fig. 1. The
level of context is defined by the context parameter θ ∈ [0, 1].
θ = 0 corresponds to not using any context, while θ = 1 corre-
sponds to the full use of context (i.e. SDM). It is possible to see
that, surprisingly, using the sparse matrix C̃ actually results in
slightly better performance than using the full covariance ma-
trix, especially in terms of robustness. That is to say, the use of
the full context does not help!

Fig. 2: Examples of feature covariance matrix (left) and patch-based correlation
coefficients, derived from Eq. 10 (right, red indicates higher correlation, blue
lower; better seen in colour).

4. Sparsifying the covariance matrix

In this section we explore intermediate levels of context, chang-
ing between it being used in full, and it being discarded entirely.
To this end, let us express the full feature covariance matrix as
the block-wise matrix:

C =


C1,1 · · · C1,n

...
. . .

...
Cn,1 · · · Cn,n

 (9)

We can now define the Pearson correlation coefficient between
patches based on the blocks of C as:

γi, j =
‖Ci, j‖2F

‖Ci,i‖F‖C j, j‖F
(10)

The value γi, j ∈ [0, 1] defines how correlated the features cor-
responding to landmarks i and j are throughout the dataset.
If the aim is to remove the least useful context from the fea-
tures, this can be done by eliminating the least correlated
blocks within C. We can now sparsify C by suppressing ev-
ery Ci, j for which γi, j < 1 − θ, where θ ∈ [0, 1] is the level of
context. We denote the resulting sparsified feature covariance
matrix as Cθ. Please note that the resulting matrix can still be
treated as a covariance matrix, since γi, j = γ j,i. An example of
the feature covariance matrix, and the matrix of coefficients γi, j,
are illustrated in Fig. 2. If θ = 1, then Cθ=1 = C, and the method
reduces to the standard SDM. Instead, if θ = 0, then Cθ=0 = C̃,
and the resulting method is the landmark-independent regres-
sion method.

As the matrix becomes sparser, different disjoint components
appear 2. Each of these components produce a separate predic-
tion of the full shape, similarly as indicated in 5, except that
now there are less disjoint components than landmarks. Still,
each component produces a shape prediction, and they need to
be linearly combined. The prediction for each of the compo-
nents can be computed as a closed form solution (see Eq. 4).
The mixing values {wi}i=1:Nc , where Nc indicates the number of
components, are found by keeping a portion of the training data
for validation purposes (a full crossvalidation could be similarly

2Further mathematical derivation, as well as how to find these disjoint com-
ponents, can be found in Sánchez-Lozano et al. (2013).
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used). After optimal parameters are found, training of the least
squares regressor is conducted with the full amount of data.

It is interesting to note in here that several works have tack-
led the problem of feature selection following a sparse-inducing
criterion Zhang et al. (2011); Xu et al. (2014). Our work differs
from these in that we generate sparsity on the covariance matrix
rather than on the original feature space. Furthermore, we do
not resort to the commonly-used L1 norm regulariser to enforce
the sparsity, but rather eliminate entries in a block-wise manner
within the covariance matrix to increase the level of sparsity of
the matrix (i.e., reduce the number of non-zero entries).

5. Sparsity and Input Data Variability

In order to study the correlation between input data variability
and the level of sparsity, we designed the following experiment.
We trained 5 different models (see Sec. 6 for details on the ex-
perimental set-up). The first model was trained using decreas-
ing sparsity values for each level of the cascade. Specifically,
since there are 5 iterations of the cascade, we select thresholds
θ = 1 to θ = 0 with decrements of 0.25 at each iteration. The
second model was trained inverting the order of the thresholds
(i.e., values go from θ = 0 to θ = 1 this time). Finally we trained
three other models where the thresholds were kept set to θ = 1,
θ = 0.25 and θ = 0 respectively throughout the cascade. The
results for the LFPW and Helen datasets are shown in Fig. 3.
These results gives experimental evidence that increasing the
level of context for each iteration of the cascaded regression
(i.e., increase θ) improves the performance. The second model
results in better performance than any other model. Instead, the
first model (decreasing the thresholds for each cascaded regres-
sion iteration) has the opposite effect, and produces the worst
performance of all models.

The optimal amount of context used on each iteration of the
cascade might vary. We speculate that the use of context be-
comes harmful when the data added does not correlate well with
the current patterns. The role of context is to disambiguate, i.e.,
to clarify which examples are really similar and which are not.
However, adding patterns that are loosely correlated to the ex-
isting input can introduce a confusing signal instead of help to
disambiguate. That is to say, adding features can either disam-
biguate if both signals collaborate to identify similar examples,
or can corrupt the input if both signals disagree with each other.

6. Experiments

This section contains the experimental results showing the prac-
tical gain attained by sparsifying the feature covariance matrix.
We compare three models, the first two trained with feature
matrix sparsification. We use however two different criteria
to define the thresholds. The first one is constructed using a
greedy parameter search. That is to say, the optimal parame-
ters for iteration 1 are computed irrespectively of the parame-
ters in successive stages. When this parameter is determined,
we proceed to find the optimal parameter for the next level of
the cascade. This same procedure is followed for all the levels.
The parameters for a given level are found using a grid search.

Fig. 3: Cumulative error distribution for the LFPW (up) and Helen (bottom)
datasets (see Sec. 6 for details on the error measure). The y value of the graph
indicates the percentage of test images with an error equal or lower to the x
value. The sparsity threshold were defined with 5 different heuristics. Black:
decrements of 0.25 from 1 to 0; Green: increments of 0.25 from 0 to 1; The
other three curves use constant thresholds.

The sequence of automatically found sparsification thresholds
for each iteration of the cascade are 0.35, 0.2, 0.25, 0.9 and 1.
The trend of an increasing sparsification parameter, and thus in-
creased use of context, for later levels of the cascade, is clear.
Our second model uses the simple heuristic of Sec. 5. Specifi-
cally, we assign θ with increasing values, ranging from 0 to 1 at
a stride of 0.25.

We further compare performance with the SDM. This would
be equivalent to using a constant θ = 1. We however also com-
pute PCA on the input data, keeping 98% of the energy. While
this improves performance, PCA cannot be easily applied to
the sparsification approach, as PCA projects the input shape
space onto a low dimensional space, in which dimensions have
no physical meaning. Thus, it would not be possible to find
a correspondence between features and landmarks. It is how-
ever only fair to compare our method against a version of the
SDM including this dimensionality reduction step, since by us-
ing PCA SDM achieves better results.

Datasets:. We use the training partition of LFPW (Belhumeur
et al., 2011) for the training of our models. The tests are car-
ried out on the testing partitions of the LFPW and the Helen
(Le et al., 2012) datasets, as well as on the AFW (Zhu and Ra-
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Fig. 4: Average mean error (y axis) vs. number of iterations of the cascade (x
axis) on the LFPW and Helen datasets.

manan, 2012) and IBUG (Sagonas et al., 2013b) datasets (see
the 300W challenge3). By doing so, we have four datasets of
increasing difficulty. While LFPW and Helen are of similar
complexity, the test on LFPW is dataset-dependent. In contrast,
the test on Helen is dataset-independent. The AFW dataset
is more challenging than both the LFPW and Helen datasets,
while the IBUG dataset is extremely challenging. We used the
re-annotations provided for the 300W challenge (Sagonas et al.,
2013b), although we use 66 landmarks instead of the 68 anno-
tated.

Initial shape:. The initialisation is based on the bounding box
automatically found by a face detector trained using the De-
formable Parts Model For training, data augmentation is used
to produce 10 initial shapes per image.

Error measure:. The error is measured as the mean point-to-
point Euclidean distance, normalised by the interocular distance
as defined on the 300W challenge (Sagonas et al., 2013a), i.e.,
defined as the distance between the outer eye corner landmarks.
For every test dataset, we further construct a cumulative error
distribution. Every point on the y axis shows the percentage of
test examples where the detection yielded an error below the x
axis value. Some other works have used the distance between
the centres of the eyes (computed as the mean of each eye cor-
ners), or the average face bounding box size. This results in
significantly different error scales, and this should be beared in
mind when interpreting these type of graphs.

Number of cascade iterations:. In here we study how many it-
erations of the cascade should be computed, i.e., we empirically
fix the parameter N. To this end, we have tested the perfor-
mance of the Greedy-search model using different number of
iterations. In this model, the ideal threshold is found automati-
cally using a CV strategy. The results for the LFPW and Helen
datasets are shown in Fig. 4. From this experiment, we con-
clude that 5 iterations provide the ideal error. This is one more
iteration than the one reported for the SDM (Xiong and De la
Torre, 2013).

3http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/

Greedy Increase SDM
LFPW 0.049 (0.043) 0.050 (0.045) 0.054 (0.048)
Helen 0.066 (0.049) 0.067 (0.050) 0.069 (0.052)
AFW 0.107 (0.058) 0.106 (0.057) 0.108 (0.062)
IBUG 0.229 (0.117) 0.226 (0.112) 0.229 (0.124)

Table 1: Mean (median) of the per-image error comparing different approaches.

Results:. Quantitative performance results for our methods and
the SDM are summarised in Fig. 5, where the cumulative er-
ror distribution is provided, and in Table 1, where the mean
and median errors of the different methods on the test datasets
are given. The median is given in this case to avoid the over-
proportioned impact of large image errors (failed fittings) on
the mean error.

By training the sparsity parameters on the LFPW, we have
tuned our algorithm for a dataset of similar difficulty. This
is shown in the the performance gain on the test partition of
the LFPW dataset. The model with heuristically-defined spar-
sity parameters yields good although slightly inferior perfor-
mance. Similar relative performances can be observed in the
Helen dataset. Instead, the AFW dataset shows slightly worse
performance when using the greedily-found parameters. For
all these cases, the SDM algorithm performs worse than any of
the two models proposed. The IBUG dataset however is much
more challenging than LFPW. Thus, the levels of sparsity de-
fined on that dataset are no longer ideal. As a result, the SDM
performs similarly to this model. Instead, the heuristics with
which the second model was trained are not data-dependent,
and this model still comes atop in terms of performance. It is
important to note that while all the graphs shown in this article
have a maximum error of 0.15, the graph corresponding to the
IBUG dataset has a maximum error of 0.4. This is due to its
very challenging nature, resulting in the cumulative error func-
tion stabilising at higher error values. These results highlight
two contributions of this article, the usefulness of sparsifying
the feature covariance matrix, and the association between the
need for context and the variability of the data.

We further provide qualitative results in Fig. 6. They serve to
illustrate the nature of the datasets employed, and the practical
meaning of the error values. The last image for each dataset
reflects an alignment failure. It is interesting to note that the
LFPW dataset contains few non-frontal head poses and thus
most of the errors happen on these cases.

7. Conclusions

In this article we examine some of the reasons behind the recent
success of the SDM, specifically focusing on its use of context.
We show that a full use of context is not ideal, explore dif-
ferent intermediate levels by sparsifying the feature covariance
matrix, and show the relation between context and the data vari-
ance. Specifically, the major conclusions of this article are: 1)
the use of context is not always beneficial, and similar or even
superior performance can be attained without the use of con-
text; 2) We show instead that defining the target of inference as
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the full shape is a key algorithmic aspect; 3) this implies that
the view of facial landmarking as a constrained optimisation
problem, which has been widely accepted until very recently, is
actually inadequate in practise; 4) we reason about the relation
of the training data variance and the need for context within the
inputs. We also show experimental evidence that strongly sug-
gests context is beneficial in the presence of higher data vari-
ances. 5) We train and evaluate a model trained in a greedy
manner as to pick the right amount of context for each itera-
tion. We show that this simple trick improves the performance
of the SDM significantly. We will also release a binary exe-
cutable, on the author’s website, to facilitate the testing of the
proposed method (upon acceptance).
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Fig. 5: Performance per method for each dataset. Red indicates the SDM performing PCA on the feature space, blue has the greedy search PO method, green
corresponds to the model trained with heuristically-defined increasing values for θ.

(a) LFPW (b) Helen

(c) AFW (d) IBUG

Fig. 6: Qualitative results on all datasets used. The last image for each dataset shows a fitting failure. The IOD error for each image are shown below each
corresponding image.


