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Abstract

This paper proposes a novel approach to part-based track-
ing by replacing local matching of an appearance model by
direct prediction of the displacement between local image
patches and part locations. We propose to use cascaded
regression with incremental learning to track generic ob-
jects without any prior knowledge of an object’s structure
or appearance. We exploit the spatial constraints between
parts by implicitly learning the shape and deformation pa-
rameters of the object in an online fashion. We integrate a
multiple temporal scale motion model to initialise our cas-
caded regression search close to the target and to allow it
to cope with occlusions. Experimental results show that our
tracker ranks first on the CVPR 2013 Benchmark.

1. Introduction
We propose a method for structured object Tracking by
Regression with Incrementally learned Cascades (TRIC-
track). Visual tracking of generic objects is one of the most
active topics in computer vision. It aims to detect the lo-
cation of a possibly moving target by extracting local ap-
pearance features and matching them between consecutive
images to obtain accurate estimates of target location, of-
ten helped by similar estimates of the object’s motion. The
parameters describing a target object can vary, but often in-
clude position, size, orientation and velocity. Tracking in-
formation can subsequently be used to reason about the tar-
get’s behaviour or complete other tasks that require knowl-
edge of the object’s state. If solved, visual tracking has
extensive applications in areas such as visual (robot) navi-
gation, surveillance, traffic monitoring, video compression,
medical imaging etc.

Despite the large body of computer vision work address-
ing this problem, robust visual tracking of generic objects
is still a challenging problem. The performance of a vi-
sual tracking algorithm is affected by many factors, such
as non-rigid object deformation, partial or full occlusion of
the target, illumination variation, scale variation, viewpoint
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Figure 1: (a) Training a direct displacement regressor with
four examples. (b) Testing a regressor. Four test patches
sampled around the initial location (blue dot) provide pre-
dictions (purple dots). (c) Evidence aggregation map. (d)
Location-based initialisation and implicit shape model.

change, motion blur, background clutter, etc. The combi-
nation of rigid motion and non-rigid object deformation re-
sults in complex appearance changes, making general ob-
ject tracking a particularly hard problem.

Current part-based trackers rely upon a response map es-
timating the likelihood that any given location in an image
represents the target (part). While approaches to the com-
putation of this fitness vary from simple template matching
to complex machine learning based methods, all assign a
single scalar value to a queried location. Tracking then be-
comes a problem of determining what area(s) to search in,
often guided by some motion model(s), how to construct an
appearance model that can capture changes in the object’s
image properties, and how to deal with local optima.

While a template likelihood strategy may appear to be
the logical solution to the visual tracking problem, its view
of the image as a set of independent, possible target loca-
tions introduces a number of inherent drawbacks. Firstly,
incorrect optima occur when changes in the target’s ap-
pearance make it look less like the original template than
some background image patch(es), or when there are mul-
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tiple identical objects (parts) in the scene. Secondly, for the
template strategy to work, an entire region of interest needs
to be searched. This can be computationally intensive, but
methods (e.g. gradient descent) introduced to speed up the
search can also converge to local optima. Thirdly, in a tem-
plate likelihood strategy local information (be it part of the
object foreground or the background) only serves to inform
the tracker whether it is the target or not. Once the opti-
mal location has been sampled, sampling additional non-
optimal local patches does not improve the confidence that
this is indeed the target location. It can only make matters
worse: increasing the size of the search area only increases
the likelihood of falling upon an incorrect optimum. Finally,
template likelihood approaches to part-based tracking can-
not directly use the appearance of one part to determine the
location of another. Although an explicit structure model
can be learned to constrain the expected relative positions
of parts, such a shape fitting step is effectively bolted-on on
top of independent, individual local part trackers.

We propose to replace this local fitness-based approach
by direct displacement-based tracking in which we predict
the two-dimensional displacement vector between the cen-
tre of a sampled image patch and the target (part) location
using regressors (see Fig. 1). In doing so, local patches
contribute to the solution by directly ‘voting’ for the tar-
get (part) location. In addition, while template-based ap-
proaches need to model part appearance and shape fitness
separately, our direct displacement prediction by regression
tracker implicitly learns the shape and possible deforma-
tions of an object. It does so by tracking each part using
not only the local evidence for that part, but also evidence
provided by neighbouring parts.

We adopt cascaded regression [3, 22], specifically the
Supervised Descent Method (SDM)[22], which has been
successfully applied to the localisation of facial points,
for which models were learned offline on very large sets
of faces. Cascaded regression makes increasingly smaller
steps towards the target location, each regressor in the cas-
cade being trained on a smaller region around the ground
truth and thus having a smaller expected error. While SDM
has been used for what is essentially structured object detec-
tion, it has never been used for online model-free tracking.
The key difference between detection of a known object
and generic object tracking is that appearance and structure
models of the former can be learned offline on potentially
hundreds of thousands of images, while the models for the
latter must be initialised on a single frame.

To learn the appearance changes of our parts over time,
we take inspiration from the incremental learning of cas-
caded regression proposed by Asthana et al. [1]. That work
personalises SDM for facial point localisation, initialising
the SDM offline on a large database of faces, and using
newly tracked faces to incrementally update it. In our ap-

proach the SDM is initialised on the first frame only, and
we use Local Evidence Aggregation [14] of the separate re-
gression contributions to provide a confidence level, which
is used to decide whether we can use the tracking result to
update the SDM.

We report on extensive tests, both internal evaluations to
determine the relative value of the various components of
our proposed tracker, and comparisons against the current
state-of-the-art. Traditional benchmark measures [21] as-
sume the target is represented by a bounding box. This is
not the case here. Deformable articulated objects often dis-
play significant non-rigid deformation during tracking. As
a result, parts of the object would either ’stick out’ of the
bounding box, or the bounding box would contain large ar-
eas of background. The method presented here therefore
tracks points, not boxes. This means that the best way to
evaluate our system is to compare the predicted and ground
truth locations of target parts. However, as this information
is not available for the state-of-the-art, we revert to compar-
ison based on a retro-fitted bounding box.

In summary, we make the following four contributions:

• We propose direct displacement prediction for the first
time in online model-free tracking. By aggregating
samples’ predictions, we obtain a robust prediction
distribution.

• We implicitly model the shape of a target using local
evidence from multiple parts.

• We adapt the framework of SDM [22] to the problem
of online tracking of generic objects. We show that it is
possible to learn the cascade models on-the-fly without
strong supervision.

• We integrate a multiple temporal scale motion model
[11], taking the proposed method beyond ’tracking by
detection’.

2. Related Work
We divide the related work in two: structured object
tracking-by-detection methods, in which the similarity is
the aim to track a structured object, and works in which re-
gressors were used to perform object alignment. We finally
highlight the similarities and differences of our approach
with respect to these methods.
Structured tracking-by-detection: Imposing shape struc-
ture on a part-based object model is typically done by com-
bining part-based appearance models and a global shape
model. Given a set of location hypotheses for each part (e.g.
particles in Particle Filtering or a Region of Interest in a
sliding-window search), the appearance models give a like-
lihood to each hypothesis. The final hypothesis finds a com-
promise between maximising the individual responses and



minimising the restrictions imposed by the shape model.
Since the number of possible outputs grows exponentially
with the number of parts and part hypotheses, it is most
common to resort to an efficient shape model, e.g. De-
formable Part Models (DPM) [7], where exact inference
is possible. These models are often extended to allow for
tracking-specific purposes, most commonly using temporal
consistency or online/incremental adaptation of the models.

For example, [18, 23] adapt the Implicit Shape Model
[13], where each part casts an independent vote on the lo-
cation of the object’s centre, and the object location is ob-
tained from their combination. The star model [4], popular
in object detection, has also been adapted for tracking. For
example, [12] incorporates the star model into a Bayesian
filtering framework and a MCMC-based search. Alterna-
tively, [25] used a tree-based model (in fact they define a
minimum spanning tree between parts), which resulted in
an equally efficient minimisation but avoided the hierarchi-
cal structure of the star model.

Another aspect characterising structured object track-
ing is the learning strategy followed. In the tracking-by-
detection framework, classifiers are trained online using the
first frame only. More recent approaches often adapt suc-
cessful structured learning classifiers online. For example,
[24] adapt the Latent SVM proposed in [7] to the online
scenario. In this way, the parts are not manually defined but
rather learnt in a weakly-supervised manner. Similarly, the
very successful Struck tracker [8] and SPOT tracker [25]
make use of the Structured SVM framework of [19].
Regression-based model-free tracking: The realisation
that discriminatively-trained regressors could be effectively
used for object localisation has been around for some time.
Several methods, such as [6], [16] and [20], propose to ex-
ploit discriminatively-trained regressors to propose new ob-
ject states, while a classifier was used in combination to
validate the predictions. [15] also used a sequence of lin-
ear regressors for facial feature tracking. Furthermore, the
successful cascade of linear regressors, popularised by [22]
for face alignment, can be traced back to a model-free track-
ing work [27], in which the authors proposed to learn a se-
quence of linear regressors (referred to as predictors), each
of increased precision but lower robustness. It has been
shown that this step is essential for producing accurate re-
sults, as a single regressor can be trained to be either robust
or precise, but not both simultaneously.
Relation to our method: Some regression-based ap-
proaches have proposed methods similar to ours. For exam-
ple, [20] proposes a routine similar to TRIC-track for online
learning of the regressors. Furthermore, [27] proposed the
use of a linear cascade of predictors instead of a single re-
gressor. The main differences are however that 1) we do
structured object tracking, and use the novel techniques de-
veloped for structured regression of [22], 2) we combine

the predictions in a robust manner using evidence aggrega-
tion [14] rather than resorting to a classifier to validate the
predictions, and 3) we integrate a multiple-temporal scale
motion model to initialise the search in subsequent frames.

Similarly, our method differs from other works on struc-
tured tracking-by-detection in that we use the efficient and
effective model of [22] instead of more cumbersome tech-
niques such as structured SVM. Furthermore, we do not re-
quire an explicit shape model [22] but rather impose spa-
tial consistency implicitly. It is interesting to notice that,
for face alignment (at its core a structured object align-
ment problem), the introduction of discriminatively-trained
regression has revolutionised the state-of-the-art.

3. Regression-based Tracker
This section describes our method of tracking by regression
with incrementally learned cascades. We first explain direct
displacement prediction by regression in 3.1. Our implicit
structure model is illustrated in 3.2. We then introduce the
adopted framework of cascaded linear regression[22] in 3.3.
The cascaded incremental learning and multiple temporal
motion modelling are explained in 3.4 and 3.5.

3.1. Direct Displacement-based Prediction

As our tracker directly predicts the locations of a number of
parts of the object by modelling the displacement from a lo-
cal patch to those parts (targets), we initialise the tracker by
defining part locations instead of a set of bounding boxes.
Thus,N initial annotated points representing corresponding
part locations are used to model the object’s structure in the
first frame of an image sequence. The locations are denoted
as L∗ = [l∗1, ...l

∗
i , ...l

∗
N ], whereN is the number of parts and

l∗i = (x∗i , y
∗
i ) is the ground truth location of part i.

In the training stage, given an image I and ground truth
L∗, training samples are obtained by randomly sampling
around L∗. Each training sample is a local image feature
Φ(I, Strain) extracted from a square image patch centred at
sample location Strain. Φ(I, Strain) and the displacement
between Strain and the target’s location L∗ are then used to
train the regressor R which uses image information from a
testing sample to predict part location.

Similarly, in the test stage, a number of test samples Stest

are selected around an initial candidate target locationLinit.
The locations Linit are determined by the multiple tempo-
ral scale motion model described in section 3.5. The re-
gressor R then predicts the displacement from these sam-
ples’ locations Stest to the target using local image feature
Φ(I, Stest). As we have no means of determining the qual-
ity of a single prediction, we combine a number of predic-
tions to determine where the target is. The rationale behind
this is that while correct predictions will aggregate around
the same location, reinforcing each other, erroneous predic-
tions will be more or less random, [14].
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Figure 2: (a) Parts initialisation. (b) Training samples ob-
tained around each part. (c) Implicit shape model. Three
regressors estimate one part’s location, each trained using
features from samples around different parts.

3.2. Implicit Shape Model

The direct displacement prediction method provides the
unique opportunity to combine local information from mul-
tiple parts, something not possible with local fitness meth-
ods. Consider part i and its neighbours part i − 1 and
part i + 1 (see Fig. 2). When seeking to locate part i
we train three separate regressors using image information
from Si−1, Si and Si+1 respectively (see Fig. 2). Similarly,
in the testing stage we use samples around initial candidate
locations of part i−1, part i and part i+1 to predict the loca-
tion of part i. In this way, the spatial relationships between
neighbouring parts are implicitly learned and applied.

Modelling groups of three parts in this way balances lo-
cal and global shape. A given part’s movements are closely
correlated with its neighbours’, while state changes in far
away parts are less likely to affect the given part’s. By com-
bining our target parts in overlapping groups of three, these
local shape relations effectively create a global shape model
(see Fig. 2). Using image information from multiple parts
also helps to avoid over-fitting. This embedding of an im-
plicit shape model in a set of regressors is only possible
because we use direct displacement prediction for tracking.
Template matching approaches require the shape to be made
explicit in the appearance model.

3.3. Cascaded Linear Regression Tracker

In our implementation of displacement prediction by regres-
sion, we adopt a cascaded linear regression framework [22],
which was proposed to locate facial landmarks. Crucially,
our method is not trained offline as in [22], but is initialised
based on the part locations marked in frame 0. We de-
scribe the cascaded linear regression framework used in our
tracker here.

When training for a given image I and initial part loca-
tionsL∗,M samples are obtained for each part by randomly

sampling from a relatively close area around the part’s lo-
cation l∗i . Sampling locations around part i are denoted as
Si = [si1, ...sij , ...siM ]T where sij is a 2D location in the
image, sij = (xij , yij). The local features Φ(I, Si) are ex-
tracted from square patches centred at Si.

We define the displacement vector (our learning goal) to
be the vector from sij to l∗i with d∗ij = (x∗i −xij , y∗i − yij).
The set of all displacement vectors corresponding to M
samples in Si is D∗i = [d∗i1, ..., d

∗
ij , ...d

∗
iM ]T . That is, D∗i

is the set of displacements from Si to l∗i . To avoid confu-
sion, we refer to D∗i as D∗i,i, so that D∗i,i+1 represents the
displacements from Si+1 to l∗i . This is how local shape is
learned.

As we describe in section 3.2, we combine three groups
of samples to predict part i’s location, which means we use
the features from Si−1, Si and Si+1 and their correspond-
ing displacements D∗i,i−1, D∗i,i and D∗i,i+1 to train three re-
gressors Ri,1, Ri,2 and Ri,3 for part i. The trained regres-
sors are able to map the samples’ local features Φ(I, Si−1),
Φ(I, Si) and Φ(I, Si+1) to the ground truth displacement
vectors D∗i,i−1, D∗i,i and D∗i,i+1, which means that the local
evidence of all three sets of samples can be used to predict
a single target part’s location.

The regressor is obtained by minimising the difference
between the predictions and the ground truth. For example,
the loss functions for Ri,1, Ri,2 and Ri,3 of part i are:

||D∗i,i−1 −Ri,1Φ(I, Si−1)||, (1)
||D∗i,i −Ri,2Φ(I, Si)||, (2)

||D∗i,i+1 −Ri,3Φ(I, Si+1)||, (3)

and the regressors are obtained by minimising these loss
functions. In the following text, we refer to the group of
Ri,1, Ri,2 and Ri,3 as Ri. It is hard to find the optimal pre-
diction of the direct displacement in one step [22]. There-
fore, we learn the displacement in a cascade of steps with
decreasing distance to the target. The cascaded linear re-
gression method [22] first learns R0

i , where 0 denotes the
first level of the cascaded regression. Similarly, D0∗

i de-
notes the displacements used for training R0

i . We obtain R0

by:

arg min
R0

i,1

||D0∗
i,i−1 −R0

i,1Φ(I, S0
i−1)||+ ||ω||2, (4)

arg min
R0

i,2

||D0∗
i,i −R0

i,2Φ(I, S0
i )||+ ||ω||2, (5)

arg min
R0

i,3

||D0∗
i,i+1 −R0

i,3Φ(I, S0
i+1)||+ ||ω||2, (6)

where ||ω||2 is the regularisation term. Please note that we
train each regressor with its corresponding samples and dis-
placements. After one cascaded level, we obtainR0 and can
obtain first level predictions of part i’s location by uniting



neighbouring parts’ predictions as follows:

S1
i = (S0

i−1 +R0
i,1Φ(I, S0

i−1))

∪ (S0
i +R0

i,2Φ(I, S0
i ))

∪ (S0
i+1 +R0

i,3Φ(I, S0
i+1)), (7)

where S1
i is the first cascade level prediction of part i. We

similarly obtain first level predictions of all other parts.
Like the first level cascaded regression, R1

i,1, R1
i,2 and

R1
i,3 are obtained by minimising functions 4, 5, 6 with S1

i−1,
S1
i and S1

i+1 and their corresponding displacementsD1∗
i,i−1,

D1∗
i,i andD1∗

i,i+1. TheR2,R3,... are learned in the same way.
In the test stage, the same number of cascaded regres-

sors contribute to the final target location prediction Sn
testi,

in which n is the number of cascade levels. We use Lo-
cal Evidence Aggregation for Regression (LEAR) [14] as a
principled way of combining the individual evidences. In
LEAR, each prediction contributes a unit two-dimensional
Gaussian with a fixed standard deviation. LEAR then ag-
gregates all these predictions into an un-normalised likeli-
hood map of the target’s location. The peak value of this
likelihood distribution determines part i’s position.

3.4. Cascaded Incremental Learning

One of the challenges of visual tracking is that ground truth
templates, or in our case ground truth direct displacements,
are available only for the first frame. Yet the appearance
of tracked parts is likely to change over time, especially for
deformable objects. The problem is then to decide when
and how to update our appearance model (i.e. regressors)
without succumbing to the model drift problem.

We use incremental learning [17] as our regressor update
method. As described in 3.3, the prediction of cascaded re-
gression results in a summation of unit Gaussians, one for
every prediction made. To estimate the confidence we have
in the final prediction, we divide the peak value of the like-
lihood map of each part by the total number of predictions.
The new peak value is used to evaluate the goodness of our
predictions. If it is greater than a threshold δv , we say that
our predictions are densely distributed. Thus, we are con-
fident about our predictions and this tracking result can be
used to update our regressors.

Turning the update of cascaded regression into cas-
caded incremental learning is non-trivial due to the inter-
relationships between the cascades: if the top-level regres-
sor improves, this would change the training of all subse-
quent steps in the cascade. Asthana et al. proposed a so-
lution to cascaded incremental learning for the problem of
face alignment [1]. We follow a similar idea to learn the
cascade models on the fly and combine the method with our
implicit shape model to update the image information and
the shape model at the same time. We however found that

using a sequential incremental update provides better results
than the specific incremental learning approach of [1].

We minimise Eqs. (4)-(6) to obtain R0
i,1, R0

i,2 and R0
i,3.

For brevity we use X0
i−1 to denote Φ(I, S0

i−1). R0
i,1, R0

i,2

and R0
i,3 can be estimated by Ridge Regression [10]:

R0
i,1 = [(X0

i−1)T (X0
i−1) + λE]−1(X0

i−1)TD0∗
i,i−1, (8)

R0
i,2 = [(X0

i )T (X0
i ) + λE]−1(X0

i )TD0∗
i,i, (9)

R0
i,3 = [(X0

i+1)T (X0
i+1) + λE]−1(X0

i+1)TD0∗
i,i+1, (10)

where E is the identity matrix which is added to make
XTX numerically stable.

As derived in [1], given the feature matrixX(A) and dis-
placement matrix D(A), where A is the number of training
samples, R(A) is obtained by:

R(A) = V (A)X(A)TD(A), (11)
V (A) = [X(A)TX(A) + λE]−1, (12)

then withB new training samplesX(B) and corresponding
displacement matrix D(B) obtained from the local neigh-
bours and a given part tracked with high confidence, the
updated regressor R(A+B) can be found as:

R(A+B) = R(A)−QR(A)+

V (A+B)X(B)TD(B), (13)

where,

V (A+B) = V (A)−QV (A), (14)
Q = V (A)X(B)TUX(B), (15)

U = [E +X(B)V (A)X(B)T ]−1. (16)

Note that the new samples added for the update of each
part during incremental learning are collected around three
parts at each cascade level. In this way the shape and ap-
pearance aspects of the regressors models are jointly up-
dated, making our tracker robust to the non-rigid deforma-
tion of articulated objects.

3.5. Multiple Temporal Scale Motion Model

We add a multiple temporal scale motion model to our
regression based tracker, which makes our method a full
tracker instead of ’tracking by detection’. As we will show
in the results section, displacement based regression works
well when test locations are sampled relatively close to the
target. Therefore, a good initial estimation of the target po-
sition is expected to significantly help to provide accurate
final predictions of target position.

To counter occlusions and abrupt motion variations,
Khan et al. proposed a visual tracker operating over mul-
tiple temporal scales (MTS, [11]). This framework learns



motion models from different temporal scales of the target
tracking history (i.e. already tracked frames), and applies
those models at different temporal scales in the future (see
Fig. 3). Here, a temporal scale is a specific sequence of
moments in time e.g. [t − 4 : t]. The construction of mo-
tion models over different temporal scales provides a much
richer description of the target’s recent path across the im-
age plane. When making predictions, the model set rep-
resents variations in target motion better than any single
model of this set. The application of these models over
multiple temporal scales in the future allows a tracker to
overcome periods of occlusion of the object.

0-order motion 
model

tt-4 t+1 t+T

Prediction scale

Model scale

Figure 3: Multiple motion models are learned from the re-
cent tracking history at different temporal scales, and each
model is applied over multiple temporal scales in the future.

Simple motion models M are learned over multiple
model-scales and are used to make state predictions over
multiple prediction-scales, by fitting a first-order polyno-
mial function. M is learned at a given model-scale sepa-
rately for the x-location, and y-location of the target’s state
and M is of order 1. For instance, an M learned at model-
scale m, predicts a target’s x-location at time t as:

x̃t = βm
o + βm

1 t, (17)

where β1 is the slope, and βo the intercept. Model parame-
ters can be learned inexpensively via weighted least squares.

A set of learnt motion models at time t is denoted as
[M1

t ,M
2
t , ...,M

|Mt|
t ], where |.| is the cardinality of the set,

which is the number of model scales. In our case, it’s
fixed to 4. Each model predicts target state l(x̃, ỹ) at T
prediction-scales. After applying the |Mt| models over T
prediction-scales, T sets of motion predictions are available
at time t.

In our part-based tracking approach, a separate MTS mo-
tion model is learned independently for each part. The
T × |Mt| motion predictions together with the prediction
of the 0-order motion model, i.e. the predicted location at
time t − 1, are available at time t. The top ranking motion
model is used to initialise the regression search, where the
ranking is determined by a classifier trained to distinguish
between foreground and background patches.

4. Evaluation
We evaluate our proposed method of part-based tracking by
regression with incrementally learned cascades (TRIC) with
five experiments: four internal experiments designed to op-
timize the parameters for TRIC, and one experiment com-
paring TRIC with the state-of-the-art trackers, in which we
retrofit a bounding-box around our tracked parts to be able
to compare it with bounding-box ground truth.

The dataset used for evaluation of the TRIC tracker in
the external experiment is the full dataset of [21]. It in-
cludes 50 video sequences and 29 state-of-the-art trackers.
This benchmark provides videos with challenging condi-
tions such as scale variation, occlusion, deformation, fast
motion and so on. Thus, we can avoid over-fitting to a
small subset or one specific attribute. All videos are manu-
ally tagged with what the main challenges of the video are.
For example, DEF is a subset containing all videos with the
attribute ‘deformation - non-rigid object deformation’ [21].
OCC is a subset including all videos with the attribute ‘oc-
clusion’. SV is the subset in which the videos have ‘scale
variation’. The internal studies are performed on 19 videos
of the DEF set. We tune the parameters with the subset and
then test on the full dataset to avoid over-fitting.

The performance of the various trackers is measured us-
ing precision [2, 9, 21] and success plots. The precision plot
measures ‘the percentage of frames whose estimated loca-
tion is within the given threshold distance of the ground
truth’ [21]. The success plot measures the percentage of
frames for which the overlap divided by the union of the
predicted and ground truth bounding boxes exceeds a given
threshold ratio which varies from 0 to 1. We report on one-
pass evaluation (OPE), i.e. the tracker is run throughout the
whole video initialised only with the ground truth in the first
frame. To rank the performance, as in [21], we use the pre-
cision obtained for a location error threshold of 20 pixels as
the precision score for the precision plot. For the success
plot, the area under curve (AUC) is used.

Because we predict the location of the target directly,
and TRIC is a part-based tracker, for the comparison with
the state-of-the-art or TRICs with different parameters, we
retro-fit a bounding box. This is the same height and width
as the bounding box ground truth in the first frame, and its
centre location defined as the mean location of all parts.

4.1. Parameters

For calculation efficiency, we re-scale images using the ini-
tial frame as the reference to make every tracked target’s
scale approximately equal to 30×30 pixels. Specifically, the
ratio is determined by (30 ∗ 2)/(w+ h), where w and h are
the bounding box groundtruth of the target. The local ap-
pearance descriptor Φ(I, Si) used in our implementation is
the Histogram of Oriented Gradients (HOG) [5], extracted
from location Si with sample size ps × ps. Because the di-



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

 

 

TRIC(Sample Number=60)

TRIC(Sample Number=90)

TRIC(Sample Number=120)

TRIC(Sample Number=240)

(a)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

 

 

TRIC(Radius=15pixels)

TRIC(Radius=20pixels)

TRIC(Radius=25pixels)

(b)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

 

 

Regression−based

Template−based

(c)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

 

 

TRIC(Lambda=0)
TRIC(Lambda=0.0001)

TRIC(Lambda=0.001)
TRIC(Lambda=0.01)

TRIC(Lambda=0.1)

TRIC(Lambda=1)
TRIC(Lambda=10)

TRIC(Lambda=100)
TRIC(Lambda=1000)

(d)

Figure 4: (a) The effect of samples number to the tracking accuracy of TRIC (sampling radius 20 pixels).(b) Effect of
sampling radius of TRIC. (c) Comparison between template-based tracker and regression-based tracker. (d) Effect of regu-
larisation parameter in ridge regression. The metric in (a),(b), (c) and (d) is the precision plot.

mensionality of the resulting feature space is relatively high,
while the number of training samples is limited, we apply
principal component analysis (PCA) to reduce the dimen-
sionality of the feature. This is also helpful for avoiding
over-fitting. Each sample’s HOG feature is represented by
Φ(I, sij , ps, b) in which b is the bias.

As the object is expected to move, image information
acquired from the background will only give approximately
correct predictions in the future, while image information
derived from the object itself is expected to remain accu-
rate over time. Thus, image patches should ideally always
capture part of the foreground, which means the size of
image patch is approximately equal to the implicit target
part’s size. The image patch size ps is therefore defined by:
ps = (ws + hs)/(N − 1), in which ws and hs are scaled w
and h. This definition ensures that the patch size is directly
related to the density of target parts.
N = 6 parts are used, as this value represents a balance

between shape expressivity and computational complexity.
All experiments use fixed δv = 0.0027 and M = 90. The
sampling radius is set to 20 pixels and the number of cas-
cade levels is 4. In our case, ps is 13 pixels. We set
λ = 0.001 in the Eq. in Sec. 3.4. The number of image
feature dimensions kept after PCA is 30.

4.2. Internal Evaluation

The internal tests are performed to optimise the internal pa-
rameters of the cascaded regressors. The first internal study
examines the influence of the sampling density used in the
training and test stages. The second investigates the ef-
fect of the sampling radius. The third internal study com-
pares the performance of direct-displacement prediction by
regression with a template based tracker using the same
features and motion model, to investigate the cascaded re-
gression’s advantage over the template based method. The
fourth internal study evaluates the effect of lambda in the
ridge regression. The first, second and fourth experiments
are performed with the full TRIC tracker. For the third

experiment, we compare the TRIC tracker, not using the
multi-temporal scale motion model and updating, with the
template based tracker which uses the same features and
motion model (a 0-order motion model).

First, we investigate the effect of sampling density by
setting the number of samples to 60, 90, 120, and 240 with
the sampling radius fixed to 20 pixels. The results are shown
in Fig. 4a. The general trend clearly shows that there is not
a large difference in the performance of TRIC with sample
number either 60 or 90. We choose 90 as the sample number
because it is more accurate within smaller error threshold.

Second, the effect of the sampling radius is determined
by varying its value in the range of 15, 20 and 25 pixels (see
Fig. 4b). The results clearly show that a large sampling area
is more likely to include poor samples and small one is not
robust enough. 20 pixels is selected to balance the accuracy
and robustness of the tracker.

Third, for the comparison between the regression-based
tracking method and the template-based method, we allow
the latter to perform a full search in the same area from
which the former samples its test locations, i.e. a circular
area of radius 20 pixels. Fig. 4c clearly shows the gain
achieved by adopting a regression based approach.

Fourth, we exploit the effect of λ in the Ridge Regres-
sion by setting the value of λ to 0 and 10k, k = −4 : 3.
Following examination of the results shown in Fig. 4d, we
chose λ = 0.001 as the optimal value.

4.3. External Evaluation

To evaluate the TRIC tracker’s performance, the TRIC
tracker is tested on the whole dataset and compared with the
results of all the 29 trackers included in the benchmark [21].
We also investigate the impact of different algorithm com-
ponents in the TRIC tracker. TRIC-M denotes the TRIC
tracker without the multiple temporal scale motion model
(i.e. assuming 0-order motion) and TRIC-I tracker is the
TRIC tracker without incremental learning, i.e. learning
only from the first frame of the video. TRIC-S refers to



Table 1: Performance of TRIC, without implicit shape
model (TRIC-S), without incremental learning (TRIC-I),
and without motion model (TRIC-M), on the DEF, OCC,
SV and full dataset of the CVPR 2013 benchmark data. # is
the rank obtained against the 29 trackers in the benchmark
[21], while Score is the precision score.

Trackers TRIC TRIC-S TRIC-I TRIC-M

Dataset # Score # Score # Score # Score
ALL 1 0.752 22 0.470 11 0.527 2 0.691
DEF 1 0.726 18 0.446 11 0.484 2 0.640
OCC 1 0.720 22 0.427 15 0.480 2 0.644
SV 1 0.695 19 0.464 13 0.480 3 0.648

the TRIC tracker without the implicit shape model.
Results are shown in Fig. 5 for precision plot and Fig. 6

for the success plot. For clarity, only the top ten trackers are
displayed. The values of the two scores for corresponding
methods are included in the legends of Fig. 5 and Fig. 6.

The precision plot of TRIC tracker is about equal to the
third-highest ranked tracker (SCM [26]) for a threshold up
to 5 pixels, and for higher thresholds it significantly outper-
forms all other trackers. Struck [8] comes second. Simi-
larly, TRIC clearly outperforms all other trackers for over-
lap thresholds up to 0.59, and is approximately equal to
SCM after that. One interpretation of these results is that
TRIC is a robust tracker, never making very large errors, but
not particularly precise. We present another interpretation,
and this is that the retro-fitting of a bounding box onto the
tracked parts of an articulated deformable object is unsuit-
able for direct comparison with bounding box trackers, as
deformations of extremities (e.g. someone extending their
arm) causes the mean location of the parts to move away
from where the bounding box ground truth would be.

Furthermore, Table 1 shows the precision score, as well
as the precision plot ranking obtained, for TRIC, TRIC-S,
TRIC-I, and TRIC-M. This clearly shows the value of the
implicit shape model. For DEF, without the implicit shape
model, performance decreases by 28%. For OCC, perfor-
mance decreases by 29% without incremental learning, in-
dicating that the incremental learning is crucial for scenar-
ios with occlusions, and 10% without the motion model,
as the motion model employed by TRIC predicts multiple
frames ahead, thus overcoming brief occlusions.

5. Conclusion

We propose a part-based tracker employing direct displace-
ment prediction rather than the traditional local matching
of an appearance model. The method employs cascaded re-
gression to directly predict parts’ locations from local image
information, learning the inference models on-the-fly. Spa-
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Figure 5: Precision plot of OPE for all 50 sequences.
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Figure 6: Success plot of OPE for all 50 sequences.

tial relationships between parts are captured implicitly by
a set of regressors. We integrate a multiple temporal scale
motion model to initialise our cascaded regression search
close to the target and to cope with occlusions. Experi-
mental results clearly demonstrate the value of the method’s
component parts, and comparison with the state-of-the-art
techniques in the CVPR 2013 Visual Tracker Benchmark
show that TRIC ranks first on the full dataset.
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